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  Abstract 

Derivative is a foundational concept in calculus but can be challenging for secondary 
students to grasp conceptually. This paper provides an overview of research-backed 
strategies for developing a strong conceptual understanding of derivative. Visual and 
intuitive approaches are discussed, such as relating the derivative to real-world con-
texts involving speed, growth, and modeling phenomena. The importance of multiple 
linked representations and building connections between graphical, numeric, verbal 
and symbolic perspectives is emphasized. Strategies for motivating learning through 
real-world applications and simulations relating concepts to students' lives are out-
lined. Procedural expertise and conceptual mastery are cultivated together. The bene-
fits of a conceptual learning, problem solving abilities, and STEM-related fields are 
noted. Curricular recommendations focus on conceptual exploration prior to formal 
definitions. Thus, the paper highlights best practices for conceptualizing derivative 
through visual-intuitive, multi-representational and application-based approaches to 
promote flexible, adaptive understanding and lay the groundwork for calculus suc-
cess. 
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1. Introduction  

Derivative is the fundamental concept in calculus that builds upon the understanding of rates of change [1]. However, re-

search has shown that many secondary-level students struggle to develop a conceptual understanding of derivatives due to 

their abstract and counterintuitive nature [2], [3]. Without a coherent conceptual understanding, students often resort to 

rote memorization of procedures instead of the flexible application of derivative principles [4]. Extensive literature in math-

ematics education has focused on the concept of derivatives and its applications in various fields. Prominent calculus text-

books, such as Stewart [5], Anton et al. [6], and Larson et al. [7], highlight the fundamental role of derivatives and their rele-

vance in real-life scenarios. 

    The definition of derivative as the rate at which a quantity changes with respect to another variable is a fundamental 

concept taught in secondary-level mathematics education [5], [6]. The unique property of derivatives in capturing instanta-

neous rates of change and examining the behavior of functions at specific points is a well-established aspect of calculus [5]. 

To facilitate conceptual understanding, the geometric interpretation of derivatives is commonly employed. This approach 

relates derivative to the slopes of curves, is documented in various calculus textbooks [5], [6]. By visualizing derivative in 

terms of geometric representations, students can better grasp the concept and its significance [5]. It is crucial for students to 

understand the distinction between average rate of change and instantaneous rate of change, which is emphasized in calcu-

lus textbooks [5], [6]. Exploring the difference between these two concepts enables students to develop a deeper under-

standing of derivatives as tools for analyzing dynamic systems. The role of limits in derivative calculations is fundamental in 

calculus [5], [6]. Taking the limit of a difference quotient is a standard procedure for calculating derivative. The notion of ap-

proaching infinitesimally small intervals, central to the concept of limits, is essential for understanding the mathematical 

foundation of derivative [5]. 

    The practical applications of derivative in daily life are well-documented in calculus. Stewart [5] and Anton et al. [6] em-

phasize the extensive use of derivative in the fields such as physics, economics, engineering, and computer science. These 

applications enable us to model and analyze real-world phenomena, ranging from the motion of objects to optimization 

problems. Secondary-level mathematics students can acquire a robust comprehension of derivative and enhance their prob-

lem-solving abilities with real-world application by implementing techniques to conceptualize derivative and exploring their 

practical applications in everyday life. The importance of these strategies for mathematics education has been emphasized 

by various authors and researchers in the field of calculus [5], [6], [7]. 

    A strong conceptual understanding of derivative is crucial, as calculus lays the groundwork for more advanced math, 

science, and engineering courses [8]. Wewe [9] argue that conceptual mastery in introductory calculus leads to better prep-

aration for university-level mathematics. Furthermore, Huang [10] found a significant link between conceptual proficiency in 

derivatives and achievement in forthcoming physics applications of calculus. The conceptual understanding of derivatives, 

which are fundamental concepts in calculus, frequently poses challenges for students in their educational journey [2], [8]. 

The abstract nature of derivatives can stance challenges for students unless presented with real-world contexts and practical 

applications [11]. Research has demonstrated that when students are provided with strategies to conceptualize derivatives, it 

leads to improved educational outcomes [12].  

    Derivatives have numerous practical applications in modeling dynamical systems and optimizing outcomes in various 

domains. Connecting derivatives to real-world problems motivates the learners and retention of abstract mathematical con-

cepts, demonstrating the utility of calculus skills [13]. The application of derivative in analyzing rates of change in natural 

phenomena fosters an appreciation for mathematics as a functional tool, supporting STEM interest development [14]. Mas-

tery of derivative enables a comprehensive understanding of quantitative aspects in fields such as economics, medicine, and 

engineering, opening pathways to technical careers that shape modern life [15]. Representing real situations mathematically 
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through derivative clarifies conceptual foundations and builds quantitative reasoning, providing transferable skills applicable 

to diverse endeavors [16]. 

    Understanding derivative also plays a crucial role in addressing complex societal issues. The ability to apply derivative 

principles aids in problem-solving, resource management, climate change modeling, trends of epidemiology, and many other 

areas where quantitative analysis is essential [15]. By understanding derivative, individuals can engage in informed discus-

sions and make decisions based on data-driven insights. Furthermore, a conceptual understanding of derivative promotes 

critical thinking and logical reasoning, empowering individuals to evaluate claims and arguments that involve rates of change 

and optimization. 

    In conclusion, derivatives are a fundamental concept in calculus with broad applications in various fields. However, stu-

dents often struggle to develop a conceptual understanding of derivatives due to their abstract nature. Geometric interpre-

tations, the distinction between average and instantaneous rates of change, and the role of limits are key components in 

facilitating conceptual understanding. Moreover, connecting derivative to real-world scenarios and applications enhances 

motivation and supports the development of problem-solving skills. A strong conceptual understanding of derivatives is es-

sential for success in advanced mathematics and for applying mathematical principles in practical situations. It also equips 

individuals with transferable skills that are valuable in a wide range of domains and societal contexts. 

1.1. Historical Context of Evolving Derivative 

The foundations of derivative can be traced back to ancient Indian, Chinese, Greek and Islamic mathematicians who explored 

infinitesimals and rate of change [17]. Ancient mathematicians initially explored the concept of derivative to understand 

rates of change, although it was not until the 19th century, through the contributions of Cauchy and Weierstrass, that formal  

definitions incorporating limits were developed [18]. However, modern calculus originated in the 17th century with the in-

dependent work of Newton and Leibniz, who formalized derivative and integrals using the limit process [18]. Newton's sem-

inal work "Methodus Fluxionum et Serierum Infinitarum" published in 1671, and introduced a graphical approach to concep-

tualizing derivative that represented a significant advancement at the time. He used physical notions of motion and a quan-

tity's "fluxion" or instantaneous rate of change to geometrically link a varying function with the increments of its independ-

ent variable as it changed [19]. Newton's approach visualized the derivative as the slope of the tangent line to a function's  

curve at a given point, representing the instantaneous velocity of the dependent variable. This built upon earlier work utiliz-

ing average rate of change over intervals, moving calculus toward the foundation of the limit that would later be formalized. 

Newton used physical analogies like motion to explain derivative in a more intuitive and visual way. His graphical interpreta-

tion, which involved diagrams and pictures, helped us understand derivative beyond just average rates. This approach was a 

pioneering effort in conceptualizing derivatives [19]. Meanwhile, Leibniz published De Geometria surva, investigating a geo-

metric interpretation of the derivative through infinitesimals [20]. However, their notation and limit-based theories were not 

fully developed until later work by mathematicians such as Euler, Cauchy and Weierstrass in the 18th-19th centuries [21]. 

    Early instruction of calculus concepts took a procedural approach rooted in symbolic manipulation [3]. In the late 1900s, 

prior to the introduction of limits, early attempts to conceptualize derivative was made through geometric and intuitive ap-

proaches. These methods based on infinitesimals aimed to develop understandings of derivative before the concept of limits, 

but sometimes mixed up graphical and symbolic aspects [22]. Through the 20th century, graphical approaches emphasizing 

visual reasoning for derivative emerged [23]. More recently, conceptual instruction stresses multiple representations, re-

al-world connections and active-learning experiences to build robust understanding [2], [19]. 

    Over time, the conceptualization of derivative has progressed from ancient geometric intuitions to contemporary for-

malizations based on limits. Ongoing advancements in instructional strategies continue to incorporate visual-spatial, tangible, 
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and applied perspectives [24]. This reflects ongoing efforts to overcome epistemological obstacles and effectively impart 

both conceptual understanding and technical proficiency with this core calculus concept. 

    Ancient Greek mathematicians including Eudoxus, Archimedes and Apollonius made early contributions to conceptual-

izing rates of change and derivatives through investigations of exhaustion proofs and theorems involving tangents to curves 

[25]. This built on earlier work by Indian mathematicians who studied infinitesimals in the spirit of calculus [26]. In Asia,  Chi-

nese mathematician Liu Hui explored derivatives and rates of change through diagrams and algebraic formulas as early as the 

3rd century [27]. Other Asian mathematicians such as Bhaskara II expanded this work, introducing basic concepts of maxima, 

minima and rates of change [28]. In the 17th century, Fermat introduced adequality and tangents to problems involving 

maxima and minima, influencing early conceptualizations of differentiation [21]. Cavalieri introduced a precursor to limits 

called method of indivisibles for finding lengths, areas, and tangents [29]. 

    In the 20th century, research further expanded the conceptual foundations of derivative. Schwartz reworked analysis 

using distributions and generalized functions, connecting derivative to impulse type concepts [30]. Tall incorporated cognitive 

science and proposed three worlds of mathematics - embodied, perceptual, and formal/axiomatic representations [22]. Re-

cent work focuses on multi-representational sense making through graphic, numeric, algebraic and contextual understand-

ings. Technological tools and simulated environments also support dynamic exploration and conceptualizing derivative [31]. 

This provides historical context on evolving perspectives of derivative from antiquity to present day instructional paradigms. 

1.2. Rationale of the Study  

Derivative, a fundamental concept in secondary-level calculus courses, often pose conceptual challenges for students [2], 

[32]. This study aims to address the issue by exploring effective conceptual teaching strategies, such as providing real-world 

contexts, which have been shown to enhance student understanding, motivation, and learning outcomes. Approaches that 

incorporate visual, tangible, and problem-solving elements align with research on meaningful learning and cater to diverse 

cognitive styles [8], [33]. These strategies not only establish a strong foundation for further calculus topics [10] but also foster 

applied mathematical thinking, essential for developing 21st-century skills and preparing students for STEM fields [15]. Fur-

thermore, the insights gained from this topic can inform secondary-level teacher training programs and the development of 

instructional materials that promote conceptual understanding [34], [16]. The strategies discussed may also enhance com-

prehension of other challenging mathematical concepts [35]. Additionally, early exposure to applied perspectives can poten-

tially increase long-term participation in STEM fields [14]. This study focus on addressing the recommendations of research-

ers regarding conceptual teaching that contributes to improved learning outcomes and holds significant relevance [12].  

    The strategies discussed align with pedagogical frameworks such as embodied cognition and situated learning theories 

[36]. From a practical perspective, offering a comprehensive understanding of effective conceptual approaches for derivative 

holds great significance for multiple reasons. Firstly, it can inform secondary-level teacher education programs regarding 

constructivist teaching methods that are supported by research (Confrey & Lachance [34] that plays a crucial role in devel-

oping foundational understandings and applying conceptual approaches in teaching [11]. Secondly, the strategies and exam-

ples discussed have implications for designing curriculum materials that align with standards and develop both conceptual 

and procedural fluency with derivative [12]. Such resources are important for classroom instruction. Thirdly, enhancing con-

ceptualization may help reduce failure rates in calculus courses by strengthening students' knowledge bases, thereby im-

proving learning outcomes. Lastly, a deeper and earlier comprehension of derivative could better prepare students for sub-

sequent STEM courses that rely on a solid understanding of calculus foundations [10]. 

    Finally, adopting an applied view of mathematics may help change mindsets and increase long-term participation in 

STEM fields by demonstrating the relevance of mathematical concepts [14]. This study contributes to the goals of improving 
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STEM education. In a broader sense, tackling challenges by employing conceptually-grounded theoretical frameworks and 

empirically-supported strategies holds immense importance in mathematics education. It not only enhances learning out-

comes but also contributes to students' future success across various disciplines. 

1.3. Objectives of the Study  

The objectives of the study are as follows. 

i) To conceptualize the concept and meaning of derivative. 

ii) To explore the different strategies for conceptualizing derivative. 

iii) To identify real-life applications of derivative and encourage to apply in their daily life situation.  

2. Methodology  

This study utilizes a review-based research design to conceptualize the meaning and applications of derivative. The over-

arching goal is to synthesize approaches that enhance student understanding of derivative and their practical applications in 

daily life. The design focuses on conceptual change through multiple representations, real-world modeling, and technolo-

gy-enhanced learning approaches. It examines the best ways to develop conceptual understanding of derivative to the learn-

er exploring the relationship between intuitive mathematical knowledge, practical applications, and real life applications. 

3. Results and Discussion  

3.1. Conceptual Understanding of Derivatives  

The derivative can be mathematically defined as the slope of the tangent line to a curve at a specific point, allowing us to 

describe instantaneous rates of change [2]. However, students often initially interpret the derivative in a procedural manner 

without connecting it to practical meaning [8]. Researchers have emphasized the importance of contextually-based and con-

ceptually-driven instruction for the derivative, which helps students understand the significance of the mathematical process 

[32], [19]. Approaching the derivative conceptually through visual, physical, and applied perspectives has proven to support 

student understanding. By providing meaningful applications, we can anchor the abstract concept of the derivative to every-

day scenarios and motivate students by demonstrating its relevance [19]. For instance, applications involving velocity, accel-

eration, or marginal cost/benefit analysis establish tangible connections [2]. Everyday contexts related to motion, such as an 

object's speed or the slope of a hilly road, have been particularly effective in building conceptual understanding of the deriv-

ative [19].  

    This overview aims to synthesize research-based strategies for teaching the derivative conceptually through practical 

applications. These strategies focus on visual, physical, and applied problem-solving approaches. Integrating such methods 

into secondary mathematics instruction has the potential to enhance students' comprehension and their recognition of the 

real-world significance of this challenging concept in calculus. The overview has briefly discussed some major ways of con-

ceptualizing the derivative. 

3.1.1. Conceptualizing Derivatives through Intuitive Understanding of Slope and Rate of Change  

The conceptualization of derivative through an intuitive understanding of slope and rate of change is a fundamental ap-

proach in calculus. Several studies and educational resources support this pedagogical strategy. Larson and Edwards [7] em-

phasizes the importance of connecting derivative to the intuitive concept of slope. They argue that understanding derivative 

as slopes of tangent lines allows students to develop a more meaningful and coherent understanding of the concept. This 
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approach aligns with the geometric interpretation of derivative, where the slope represents the rate of change at a specific 

point on the function's graph. Similarly, Thompson [1] explores the notion of rate of change as a foundational concept for 

understanding derivative. He suggests that the intuitive understanding of rate of change, such as velocity or growth rates, 

can serve as a bridge to grasping the concept of derivative. By relating derivative to these familiar real-world contexts, stu-

dents can develop a deeper conceptual understanding. 

    Stewart [5] also emphasizes the intuitive understanding of derivative through slope and rate of change. He presents the 

graphical interpretation of derivative, highlighting the connection between the slope of a tangent line and the instantaneous 

rate of change at a point. This graphical approach provides a visual representation that aids students in conceptualizing de-

rivative. Furthermore, Anton et al. [6] emphasis on intuitive understanding of derivative through rate of change. They high-

light the interpretation of derivative as rates of change in various contexts, such as motion, population growth, and econom-

ics. This approach helps students connect derivative to real-world applications and enhances their conceptual understanding. 

    Intuitive understanding of slope and rate of change is a widely supported approach in the conceptualization of deriva-

tive. Larson and Edwards [7], and Thompson [1] highlight the importance of connecting derivative to slope and rate of 

change, while Stewart [5] and Anton et al. [6] provide instructional resources that emphasize this intuitive approach. For 

example, Figure 1 describes conceptualizing derivative through a graphical representation using a population growth scenar-

io (i), tangent to the curve at point A (ii) and different positions of tangent lines (iii). The instantaneous rate of change in 

population at time 3 days when population is 500 can be represented as the slope of the tangent line to the population curve 

at point (3, 500). Drawing the tangent line relates its slope to the definition of derivative, aiding intuitive understanding. Us-

ing population growth anchors the concept. Approximating the slope also reinforces the definition of derivative as a limit. 

This graphical approach supports conceptualization through visualization and application to a concrete scenario. Thus, estab-

lishing connections between slope and rate of change in real-world contexts enables students to cultivate a profound and 

significant comprehension of this fundamental concept in calculus. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Graphical Representation of the Curve with Slope and Rate of Change 

3.1.2. Conceptualizing Derivative through Definitions and Notations   

Definitions of derivatives lay the foundation for students to conceptually understand this important concept of calculus. De-

rivative can be defined formally as the limit of the average rate of change [7]. Specifically, the derivatives at a point 𝑥 = 𝑎 for 

a function 𝑓(𝑥) is defined as: 

𝑓′(𝑎) = lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
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    Where ℎ approaches zero and the fraction 
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
 represents the average rate of change between the points 

[𝑎 + 𝑓(𝑎)], and [𝑎 + ℎ, 𝑓(𝑎 + ℎ)] [1]). Connecting this definition to graphical representations of slopes allows students to 

interpret derivatives visually as the slopes of tangent lines [2]. 

    The derivative of a function 𝒇(𝒙) with respect to 𝒙, written as 𝒇′(𝒙), is defined as the limit used to calculate the slope 

of the tangent line at each point. The domain of the derivative function 𝒇′(𝒙) consists of all the 𝒙-values where this limiting 

process is defined. Geometrically, 𝒇′(𝒙) represents the slope of the tangent line to the graph of 𝒇(𝒙) at the point 

[𝒙, 𝒇(𝒙)] (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Graphical Representations of Derivative with Definition and Notations 

 

    In Figure 2, the slope of chord 𝑃𝑄 = tan 𝑄𝑃𝐶 = 𝑡𝑎𝑛 =
𝑄𝐶

𝑃𝐶
=

𝑓(𝑎+ℎ)−𝐹(𝑎)

ℎ
. As Q→P, then h→0 and chord PQ will be-

come tangent at P. 

    Notation plays an important role in solidifying conceptual understanding of derivatives. Using derivative notation such 

as 𝒇′(𝒂) emphasizes that the derivative is a function in itself rather than merely the slope at a point [7]. Symbolic conven-

tions like 
𝒅𝒚

𝒅𝒙
 or 

𝒅𝒇

𝒅𝒙 
 (Leibniz notation), 𝒇′(𝒙) or 𝒚′(Lagrange notation), �̇� (Newton notation), Dy (Euler notation), etc. de-

noting the derivative of a function 𝒚 with respect to 𝒙 help students understand derivative as ratios describing instanta-

neous rates of change [10](Figure 3).  

  In Figure 3, the slope m of a secant line is written in terms of 𝒇(𝒙) at points 𝒙 and 𝒙 + ∆𝒙, representing the change in 

𝒚-values over the change in 𝒚-values 
𝚫𝒚

𝚫𝒙
. Imagine that ∆𝒙 approaches zero, where the slope is the exact tangent line rather 

than a secant approximation. This thought exercise reinforces the definition of derivative as a limiting rate of change, en-

couraging students to mentally link graphical and analytical slopes involving limits. Relating the derivative to the familiar 

rise-run ratio also intuitively anchors the concept. This visualization effectively guides students to build an understanding of 

differentiation from the first principles of limit and graphical interpretations. Exploring how different notations link to graph-

ical, numeric, and real-world interpretations of derivatives aids conceptualization. Overall, formally defining derivatives while 

highlighting connections to multiple representations supports a coherent conceptual framework [37]. 
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Figure 3. Graphical Representation of Derivative of a Function with Increment x and ∆y 

     

3.1.3. Conceptualizing Derivative through Differentiation Rules    

Memorizing differentiation rules alone does not develop a conceptual understanding of derivatives. However, when accom-

panied by strong foundations in definition, notation, limits, and graphical/numerical representations, rules can reinforce con-

ceptualizations [3]. For example, exploring the Power Rule - that the derivative of 𝑥𝑛 is 𝑛𝑥𝑛−1 connects to the definition of 

derivative as limits of difference quotients and visual representations of slopes [10]. Considering how differentiation rules 

arise from analytic definitions builds coherence [7]. 

    Linking rules to multiple perspectives strengthens flexible knowledge. Investigating how graphical behaviors follow from 

rules, like maximum/minimum points relating to 𝒇′(𝒙) = 𝟎, supports function thinking [37]. Applying rules to real-world 

word problems allows conceptual use beyond symbolic manipulations. Working through detailed derivations of common 

rules from first principles, like the Chain Rule, helps demystify previously "opaque" procedures [1]. Relating new rules to 

conceptual schemas forged from definitions/limits enhances understanding of rote drilling [2]. Similarly, we can show the 

relation of the Product Rule and the Quotient Rule. Overall, differentiation rules foster mastery when coupled with rich, 

linked conceptual foundations [7]. Thus, incorporating visual representations during the teaching and learning process, stu-

dents can develop a deeper conceptual understanding of derivative and differentiation rules. Visualizations help bridge the 

gap between abstract mathematical concepts and their real-world applications, making the learning experience more engag-

ing and meaningful. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Graphical Representation of Maxima and Minima and Rate of Change 
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In Figure 5, the model presents an example of a chain rule. The composition of functions 𝒇 and 𝒈 occurs when the output 

of 𝒈 is used as the input for 𝒇. The range of 𝒈 must be contained in the domain of 𝒇 for this composition to work. If 𝒙 

represents the input to 𝒈, 𝒈(𝒙) is the output, which becomes the input to 𝒇, resulting in 𝒇(𝒈(𝒙)). The function 𝒉 rep-

resents the transformation from 𝒈′s input to 𝒇′s output. The derivative of 𝒉 measures the change in 𝒉′s output with a 

small change in its input, or equivalently, the change in 𝒇]s output with a change in 𝒈′s input. The chain rule calculates this 

derivative by tracing the chain of events from the input of 𝒈 to the output of 𝒇. Changing the input to 𝒈 affects the out-

put of 𝒈, which in turn affects the input to 𝒇, resulting in a change in 𝒇′s output. The derivative of 𝒉′ is the ratio of the 

change in the faceted sphere to the change in the sphere. The derivative of 𝒈 is the ratio of the change in the cube to the 

change in the sphere, and the derivative of 𝒇 is the ratio of the change in the faceted sphere to the change in the cube. By 

multiplying the ratios of the derivatives of 𝒈 and 𝒇, the factors corresponding to the change in the cube cancel out, yielding 

the ratio corresponding to the derivative of h. Using "d" to denote "change in," we can express the chain rule result in terms 

of the function machine inputs and outputs. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Graphical Representation of a Model of Chain Rule 

 

3.1.4. Conceptualizing Derivative through Concrete Examples and Graphical Representations     

Using concrete examples that emphasize physical phenomena and contextual applications helps students grasp the meaning 

and significance of derivatives [37]. For instance, exploring instantaneous velocity from kinematic equations or accelera-

tion/slopes of position-time graphs fosters intuitive links between concepts [1]. Graphical approaches are essential for visu-

alizing derivatives. Relating the tangent line approximation to the slope of a curve at a point advances understanding of de-

rivatives as rates of change [2]. Comparing graphs of functions and their derivative illustrates general properties like maxi-

mums relating to where the slope is zero [37]. Figure 6 presents the graph of concrete examples (i), (ii) and a model of in-

stantaneous speed (iii). The visualization of graphical representation can make more interactive and dynamic exploration of 

functions and connections between representations using graphing technology [8]. Tools like Geometer's Sketchpad, Geoge-

bra, or Desmos let users visualize tangent lines while zooming or manipulating slides. This dynamic approach promotes flexi-

bility and applied thinking over memorization [38]. Seeing connections between graphs, tables, equations, and descriptions 

provides reinforcement from complementary perspectives [10]. Representational flexibility aids transfer to new contexts or 

strategy selection for diverse problems [39]. Overall, concrete examples combined with graphical and dynamic visualization 

foster intuitive, applicable conceptualization of derivatives. Graphical representations have been shown to support the con-

ceptualization of derivatives [32]. Students can analyze graphs to qualitatively reason about rates of change and link graph-

ical behavior to features of the original function [16]. 
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Figure 6. Graphical Representation of Maxima and Minima and Rate of Change 

 

    The identification of increasing and decreasing intervals in a function can be accomplished by analyzing the sign of its 

derivative over a given interval. The advent of graphing technology has revolutionized the way students can interactively vis-

ualize derivatives by manipulating functions and observing instantaneous alterations in both the function's graph and its de-

rivative [8]. This technological advancement provides a dynamic and intuitive platform for students to explore the behavior 

of functions and deepen their understanding of calculus concepts. As concluded by (Chauvot [16], the students engaging in 

graphical analysis tasks promoted conceptual understanding beyond procedural fluency.  

    Similarly, concrete manipulatives offer another mode for visualizing and building intuition about derivatives [40]. Like-

wise, real examples of costs and benefits make connections between abstract ideas and real-world use. It provides multiple 

ways like physical demonstrations to represent the relationships between changes in costs and benefits. 

3.1.5. Conceptualizing Derivative through Employing Real-world Context      

Using real-world contexts helps students understand how derivative models apply to situations [41]. Exploring velocity, ac-

celeration, or exponential growth in biology, physics or economics fosters relevance and motivation [1]. Relating derivatives 

to many practical examples shows their broad utility in modeling rates of tangible processes [3]. Investigating optimization or 

related rates problems situated in authentic scenarios promotes active, inquiry-based learning over mere mechanics [10]. 

Graphing calculators or computer programs allow simulations and visualizations that reinforce theoretical understandings 

with dynamic, interactive representations [37]. Geometer's Sketchpad or Desmos enables observing changing graphs interac-

tively to build flexible thinking [8]. Overall, embedding derivatives within meaningful practical applications provides a pur-

pose for learning beyond standardized exams. This fosters ownership and retention by demonstrating relevance to students’ 

worlds [41].  

 

 

 

 

 

 

 

 

Figure 7: Graphical Representation of Images in the Real-world Context 

 

    Solving contextual word problems is critical for students to attach conceptual meaning to derivatives [32]. Exercises in-

volving concepts like velocity, acceleration, or profit maximization have engendered an understanding of derivatives as in-
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stantaneous rates and tools for optimization. For example, formulating and solving word problems involving real-world sce-

narios like traffic flow, construction mechanisms of suspension bridges, staircases, etc. can be used to strengthen the con-

ceptualization of derivatives for students. Derivatives, which are mathematical tools that measure rates of change, are actu-

ally used in everyday applications instead of just abstract calculations [42]. Figure 7 presents the different real-world models 

for conceptualizing derivatives. 

3.2. Defining Derivative      

The derivative of a function f(x) at a point x, denoted by f^' (x), is defined as the limit of the average rate of change of f as ∆x 

approaches 0. It represents the instantaneous rate of change of the function with respect to the independent variable [5]. 

Derivatives allow mathematicians to analyze rates of change, optimal values, linearization, and other properties that help 

understand naturally occurring phenomena [37]. They are foundational concepts in calculus and underlie principles of physics, 

engineering, economics, and other quantitative disciplines [15]. Historically, the development of derivative concepts was 

fundamental to the emergence of calculus and its applications across sciences. This established much of the foundation for 

modern quantitative fields [18]. Derivative can be defined from various perspectives. 

    Geometrically, the derivative indicates the slope of the tangent line to the function's graph at any point (Figure 1). 

Symbolically, derivative gives algebraic rules to determine instantaneous velocities and incremental change from functions 

defined by formulas [10] (Figure 2(ii). Graphically, derivatives permit identifying maxima, minima, and points of inflection to 

optimize target quantities (Figure 4(i). Their uses range from modeling simple kinematic situations to solving complex opti-

mization problems [13]. Computationally, derivatives establish procedures for taking derivatives of basic and composite func-

tions using rules like the power, constant multiple, sum, difference, and quotient rules. This allows analysts to mathematical-

ly model real-world situations [43]. Conceptually, derivative formalizes the intuitive notion of instantaneous rate of change 

and operationalizes it mathematically. This links calculus to physical phenomena and geometric relationships [2]. Pedagogi-

cally, derivatives are a threshold concept that students must master to progress in calculus. Research finds transforming stu-

dent preconceptions is crucial for comprehensive understanding [35]. 

3.3. Strategies for Conceptualizing Derivative       

Graphical approaches play a crucial role in interpreting derivatives as rates of change from geometric and numeric perspec-

tives, aiding in the development of intuitions for derivatives as slopes of tangent lines. Dynamic graphing technology facili-

tates interactive exploration of how derivatives change with functions [8]. Real-world connections enhance conceptual un-

derstanding by applying derivatives to contextual problems involving velocity, acceleration, maximization, and other applica-

tions promoting student engagement [44]. 

    Utilizing multiple representations simultaneously, including numeric, graphical, symbolic, and verbal forms, supports 

translational reasoning between different representations ([10]. Multidimensional perspectives reinforce accurate conceptu-

al models [11]. Limit-based definitions formalize derivative formulas, while numeric and graphical approaches provide intui-

tive understanding [2]. Bridging intuitive and formal aspects fosters more robust cognition of this essential concept [8]. Tan-

gible manipulatives, such as simulations of motion, rates of slope, stretching/shrinking, and embodied metaphors, make de-

rivatives more tangible and enhance conceptual understanding [33]. Physical experiences further solidify conceptual under-

standing [16]. Active learning approaches prioritize conjecture, justification, and collaborative sense-making over routine 

skill-building [35]. Inquiry-based activities promote deeper engagement compared to traditional instruction [45]. 

    Several strategies can be employed to conceptualize derivatives effectively. Problem-solving contexts, involving re-

al-world scenarios, require the application of derivative concepts and rules, improving understanding of their practical uses. 
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Verbal explanations, where students articulate and reflect on their derivative ideas, aid in identifying and addressing mis-

conceptions [16]. Metaphors and analogies, relating derivatives to familiar actions like velocity or units flowing in/out, facili-

tate initial comprehension of rates of change and sustain interest [36]. Modeling mathematical thinking by thinking aloud 

during derivative problem-solving demonstrates expert reasoning processes, allowing students to internalize holistic ap-

proaches [35]. Identifying and addressing students' pre-existing ideas and misconceptions helps frame instruction relative to 

their zones of proximal development [34]. Technology, such as dynamic function graphs, sliders, and interactive simulations, 

provides dynamic and visual tools for reasoning about derivatives without relying heavily on symbolic manipulation [31]. 

Some major strategies for conceptualizing derivatives have been discussed below. 

3.3.1. Intuitive Understanding of Slope and Rate of Change        

The slope is intuitively grasped from observing hills, where steepness matches rise over run. This informal sense of faster or 

slower change provides a basis to define the rate. Rate of change can be used in everyday activities like driving distances over 

time, and linking informal ideas to symbols. Comparing scale diagrams nurtures seeing constant rates as straight lines [36]. 

Research has shown that when it comes to understanding slope, gestures can convey meaning before formal mathematical 

symbols, indicating that physical understanding comes before the development of formal skills [46]. Mathematics builds up-

on qualitative observations of changing quantities in various contexts, as these experiences serve as a foundation for further 

mathematical understanding. Intuition develops in other ways as well. For example, comparing the crawling speeds of babies 

and adults can provide an intuitive feel for slopes [36]. Real-world examples such as the steepness of hiking trails or the 

slowing down of rolling balls connect rates to tangible objects [2]. Judging winners in a footrace involves comparing changes, 

and this kind of informal problem-solving precedes the use of mathematical symbols [34]. Experiences like these help stu-

dents develop an intuitive understanding of concepts like slope and derivative, which are later expressed more precisely in 

mathematical terms. 

3.3.2. Visualizing Derivative through Graphs and Geometric Interpretations         

The slope of a tangent line visually shows the instantaneous rate of change or derivative at a point [2]. As the interval near a 

point narrows, the chord slope approaches the tangent slope. Graphing polar functions allows seeing velocity and direction 

changes. Relating derivatives to tangent slopes helps understand kinematics concepts like acceleration [37]. The area under 

curves intuitively links to accumulated quantities over time, supporting interpreting derivative as rates given by slopes [35]. 

Gaining an understanding of derivatives as limits and their practical optimization applications becomes clearer when observ-

ing tangent lines representing small changes [47]. Manipulatives like slinky springs show derivative geometrically through 

distance changes over time [48]. Motion maps overlaying graphs develop system thinking for modeling dynamics [49]. 

Graphs help visualize derivatives through techniques like manipulating sliders online [8], connecting areas to changes, and 

animating tangent lines [50]. 

3.3.3. Exploring the Concept of Instantaneous Rates of Change of a Curve          

The idea of an instantaneous rate of change arises from considering what happens as the measurement interval approaches 

zero [1]. Exploring varying intervals on motion graphs intuitively develops the derivative as the limiting average rate [3]. 

Graphing calculator software displaying chords and tangents fosters examining chord approximations converging to the limit. 

Manipulatives like marbles on ramps relate physical rates to their graphical representation as slopes [51]. Comparing tables, 

graphs, and rules coordinates multiple representations for more coherent conceptualization [2]. Additional conditions can 

also help explore instantaneous rates. Actively manipulating graphs with sliders dynamically observes how slopes change and 
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form the tangent line [8]. Relating qualitative observations of changing quantities over infinitesimal intervals to limited defi-

nitions links intuitions and formalism [52]. Qualitatively comparing speeds in contexts like racing supports instantaneous ide-

as [53]. Relating zooming microscopically to the limit process enriches physical intuitions [54]. These various representations 

foster exploring the instantaneous rate concept. 

3.3.4. Applying the Concept of Limits to Define Derivative           

The formal definition of the derivative is based on the limiting process of the average rate of change over narrowing intervals 

approaching zero, as described by [2]. This concept can be explored by examining rates over varying intervals to develop in-

tuition. Using graphing calculators to compute chord slopes and visualize their convergence to the tangent slope reinforces 

the limited interpretation of the derivative. It is critical to relate quantitative and qualitative notions of instantaneous rate to 

the limit definition in order to foster coherent understanding, as emphasized by Ferrini-Mundy and Graham [3]. This under-

standing becomes particularly important when analyzing examples where average and instantaneous rates differ, such as at 

corners, since limits are necessary to precisely quantify such behavior [8]. Investigating limits numerically and graphically 

before addressing them symbolically helps students connect intuitions to formal definitions [10]. Using different representa-

tions can help with the concepts. Looking at limits, rates of change, and slopes together connects them [1]. Other ideas sup-

port applying limits to derivatives. Students can watch chords move closer to tangents using software [37]. Physical examples 

where things get closer as changes shrink give meaning to limits [48]. Engaging in numerical calculations to approximate lim-

its adds a concrete dimension to the concept [55]. Comparing derivatives of commonly encountered functions helps solidify 

understanding [41]. Employing multiple perspectives to comprehend these ideas reinforces the fundamental definition of the 

derivative as a limit. 

3.3.5. Interpretation of Derivative            

Derivatives have various interpretations that shed light on their meaning and significance. The derivative can be interpreted 

and understood from various perspectives that build students' conceptualization. From a rate of change view, it represents 

the instantaneous slope of the tangent line at a point on a function's graph [2]. Geometrically, this connects to visualizing the 

derivative as the slope of the tangent line. Derivatives also model real-world contexts through physical interpretations like 

velocity or profit rates [1]. Numerically, it describes how quickly a function is increasing or decreasing [3]. Analytic uses in-

volve finding stationary points and inflection points. Procedurally, students apply derivative rules and formulas computation-

ally or through implicit differentiation of more complex functions [8], [41]. Locally, it approximates linear behavior near a 

point and depicts incremental changes for optimization and sketching [7]. Approximations in mathematics often utilize tan-

gents represented in linear form [8]. Symbolic calculations involve interpreting rules and following specific steps [10]. How-

ever, to achieve flexible application, it is crucial to develop a comprehensive conceptual understanding that connects differ-

ent representations [1]. 

3.4. Applications of Derivatives in Daily Life for Secondary-Level Mathematics Students             

Secondary students encounter numerous real-life applications of derivatives in their day-to-day experiences, which can serve 

as a source of motivation for learning about derivatives [47]. Here are some brief examples of real-life applications that sec-

ondary-level students may encounter: 

3.4.1. Physics              

Derivatives are used to analyze the motion of objects, such as calculating velocity, and acceleration, and determining the be-
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havior of moving objects (cars, projectiles, etc.). They are fundamental in understanding concepts like kinematics and dy-

namics [7]. 

3.4.2. Sports and Athletics               

Derivative is used in sports analysis to study the performance of athletes. It can be applied to analyze factors like speed, ac-

celeration, and optimal strategies in sports such as track and field, swimming, and cycling [13]. 

3.4.3. Economics and Business                

Derivatives play a crucial role in economics and finance. It is used to model and analyze cost, revenue, and profit functions, 

optimize production and pricing strategies, and understand the behavior of financial markets [2], [4]. It is also used to analyze 

investment strategies and calculate interest rates. 

3.4.4. Engineering                 

Derivatives can be used in various engineering fields to analyze rates of change, optimize designs, speed, and efficiency of 

machines, and understand the behavior of physical systems. They are applied in areas such as mechanical engineering, elec-

trical engineering, and civil engineering. 

3.4.5. Medicine and Biology                  

Derivative is used in medical and biological research to model physiological processes, model the spread of diseases, analyze 

drug concentration in the body, and understand physiological processes [8]. It is used to analyze the rate of change in biolog-

ical systems and study population dynamics. They are used in fields such as pharmacology, epidemiology, and biomechanics. 

3.4.6. Computer Science                   

In the realm of computer science, the derivative finds valuable applications, especially in domains like machine learning, data 

analysis, and optimization algorithms. It plays a key role in optimizing algorithms, analyzing data structures, and compre-

hending the behavior of computer programs [10]. By leveraging the power of derivatives, computer scientists can enhance 

the efficiency and effectiveness of computational systems, enabling advancements in various technological fields. 

3.4.7. Environmental Science                    

The derivative serves as a valuable tool for modeling and analyzing environmental systems, encompassing areas such as the 

spread of pollutants, examining rates of change in ecological dynamics, and assessing the impacts of climate change. By em-

ploying derivatives, researchers and scientists gain insights into the intricate workings of environmental processes, enabling a 

better understanding and prediction of complex phenomena [1]. This knowledge is crucial for developing effective strategies 

for environmental management, conservation, and mitigating the effects of environmental changes. 

    These are just a few examples of the wide-ranging applications of derivatives in daily life. Derivatives can be used in 

various fields to analyze rates of change, optimize processes, and understand the behavior of systems. It is used as a valuable 

tool for modeling and solving real-world problems. These applications can help students see the relevance and practicality of 

derivatives in their daily lives, making the concepts more meaningful and engaging. Teachers can incorporate other more 

real-life examples and problem-solving tasks to illustrate how derivative is used in various fields. 
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4. Conclusion                     

Building a strong foundation for derivatives is important. Prioritizing meaningful learning of foundational derivative concepts 

sets the stage for success in STEM and quantitative fields relying heavily on mathematical modeling and problem-solving 

skills. It is needed to develop a strong conceptual foundation of derivatives early in mathematics courses. Visualizing rates of 

change geometrically and intuitively grasping instantaneous behavior through limits lays the groundwork for future success. 

As mathematics progresses to more advanced topics relying on calculus, such as physics, engineering, and economics, a co-

herent and flexible understanding of derivatives cannot be underestimated. It is necessary to explore multiple linked repre-

sentations of derivatives and build relationships between graphical, numeric, contextual, and symbolic aspects. Investigations 

involving real-world applications, graphical technologies, and physical models can enrich students' intuitions before intro-

ducing formal definitions. Ongoing assessments should evaluate conceptual understanding over rote manipulation of proce-

dures to guide necessary remediation. 

    There are several strategies that can be employed to build students' conceptual understanding of derivatives. Visualiz-

ing rates of change geometrically through graphs of functions and relating the slope of tangents to real-world contexts like 

speed and velocity lays an intuitive foundation. The formal definition of the derivative can be connected to intuitions about 

average and instantaneous change rates through limiting processes while approximating the derivative numerically and 

graphically. Developing understanding across multiple linked representations from graphical and numeric to analytic, verbal, 

and contextual perspectives reinforces comprehension as students translate between representations. Relating derivatives 

to experiences with magnification and interpreting them as describing the best linear approximations near a point also fos-

ters intuition. Working through physical examples involving motion, costs, growth, and other relatable phenomena motivates 

learning by connecting mathematical concepts to real-world situations. Exploring functions through finding extrema, and 

inflection points, and investigating concavity while generalizing across diverse examples deepens conceptual insights. Proce-

dural fluency with derivative rules is strengthened when algorithms and symbolic manipulations are linked tightly to their 

conceptual underpinnings. With a focus on building rich, flexible conceptual schemas through visual, numeric, contextual, 

and multi-representational perspectives, students can develop a strong foundation for success in calculus. 

    It is recommended that curricula should allow for rich investigations of derivative concepts through visual, numeric, and 

applied contexts before introducing symbolic rules and algorithms. Students need time to develop intuitions about rates of 

change and their real-world interpretations through qualitative observations and technological explorations. Formal defini-

tions are best introduced after intuitions have been built, making abstract concepts more meaningful and accessible. A 

greater emphasis on conceptual comprehension over procedural fluency in early learning can provide students with a 

stronger conceptual foundation to successfully apply and generalize derivative concepts. 
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