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  Abstract 

Many differential geometers studied different types of manifolds with a 
semi-symmetric metric connection. In the present paper, we study semi-symmetric 
nonmetric connections on an almost para-contact manifold in relation to 
semi-symmetric nonmetric connections. In another section of the work, we have 
studied the curvature tensor and Nijenhuis tensor. 
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1. Introduction  

Semi-symmetric metric connection has been studied by various mathematicians including Ram Nivas [7], Srivastava [5], Imai, 

and S.I. Hussain [4]. I. Sato defined and studied para contact manifolds. K.D. Singh and Rakeshwar Singh have studied 

semi-symmetric metric connection on an almost para-contact manifold [9]. Recently Nirmala S. Agashe and others have de-

fined the motion of semi symmetric nonmetric connection in a Riemannian manifold [1].   
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2. Preliminaries 

Let 𝑀𝑛 be an n-dimensional real differentiable manifold equipped with a 𝐶∞ (1,1) tensor field f, a 𝐶∞ vector field T and a 
𝐶∞ 1-form A satisfying 

` (𝑎)𝑋‾‾ = 𝑋 − 𝐴(𝑋)𝑇    𝑤ℎ𝑒𝑟𝑒𝑋‾ = 𝑓(𝑋)  (𝑏)𝐴(𝑇) = 1      (1.1) 

Then the structures (𝑓, 𝑇, 𝐴) on 𝑀𝑛 is said to be an almost para contact structure manifold. It can be verified that on 𝑀𝑛 
the following holds. 

(𝑎)𝑇‾ = 0  (𝑏)𝐴(𝑋‾) = 0  (𝑐)𝑟𝑎𝑛𝑘(𝑓) = 𝑛 − 1        (1.2) 

An almost para contact manifold 𝑀𝑛 with structure (𝑓, 𝑇, 𝐴) always admits a positive definite Riemannian metric g which 
satisfies 

 (𝑎)𝑔(𝑋‾, 𝑌‾) = 𝑔(𝑋, 𝑦) − 𝐴(𝑋)𝐴(𝑌)  (𝑏)𝑔(𝑋, 𝑇) = 𝐴(𝑋)       (1.3) 

𝑀𝑛 endowed with sucha metric g is called almost para contact metric manifold with structure (𝑓, 𝑇, 𝐴) from (1.3) it follows 
that 

𝑔(𝑋‾‾, 𝑌‾‾) = 𝑔(𝑋‾, 𝑌‾)          (1.4) 

If we put 

𝐹(𝑋, 𝑌) = 𝑔(𝑋‾, 𝑌)           (1.5) 

then we get 

 (𝑎)𝐹(𝑋, 𝑌) − 𝐹(𝑋, 𝑌) = 0  (𝑏)𝐹(𝑋, 𝑌‾) − 𝐹(𝑋‾, 𝑌) = 0  (𝑐)𝐹(𝑇, 𝑌) = 0    
  (1.6) 

A linear connection 𝛻 is said to be semi-symmetric connection on the almost para contact manifold 𝑀𝑛 if its torsion tensor 

𝑆(𝑋, 𝑌) = 𝛻𝑋𝑌 − 𝛻𝑌𝑋 − [𝑋, 𝑌] 

satisfies the formula 

𝑆(𝑋, 𝑌) = 𝐴(𝑌)𝑋 − 𝐴(𝑋)𝑌          (1.7) 

𝛻 is said to be semi-symmetric non meyric with respect to the associated Riemannian metric g if 

(𝛻𝑋𝑔) = −𝐴(𝑌)𝑔(𝑋, 𝑍) − 𝐴(𝑍)𝑔(𝑋, 𝑌)         (1.8) 

We define 𝛻 to be semi-symmetric nonmetric f-connection if in addition to (1.7) and (1.8) 𝛻 satisfies 

(𝛻𝑋𝑓) = 0           (1.9) 

Suppose 𝛻 is a Riemannian connection on 𝑀𝑛, then we can always put  

𝛻𝑋𝑌 = 𝐷𝑋𝑌 + 𝑢(𝑋, 𝑌)           (1.10) 

u being tensor of (1,2) type satisfying 

𝑔(𝑢(𝑋, 𝑌), 𝑍) + 𝑔(𝑢(𝑋, 𝑍), 𝑌) = 𝐴(𝑌)𝑔(𝑋, 𝑍) + 𝐴(𝑌)𝑔(𝑋, 𝑍)        (1.11) 

Obviously, we have 



Y. Singh, P. Singh 
 

 

ISSN (Online) : 2583-1372 3 
Journal of Applied Science and Education  

(JASE) 
A2Z Journals 

 

 

𝑆(𝑋, 𝑌) = 𝑢(𝑋, 𝑌) − 𝑢(𝑌, 𝑋)         (1.12) 

Nirmala S. Agashe and others has expressed the value of u(x, y) in terms of S and S’, both being tensors of type (1, 2) as fol-
lows [1] 

𝑢(𝑋, 𝑌) =
1

2
(𝑆(𝑋, 𝑌) + 𝑆′(𝑋, 𝑌) + 𝑆′(𝑌, 𝑋)) + 𝑔(𝑋, 𝑌)𝑇         (1.13) 

where 

𝑔(𝑆(𝑍, 𝑋), 𝑌) = 𝑔(𝑆′(𝑋, 𝑌), 𝑍)           (1.14) 

It can be verified that 

𝑆′(𝑋, 𝑌) = 𝐴(𝑋)𝑌 − 𝑔(𝑋, 𝑌)𝑇           (1.15) 

and 

𝑢(𝑋, 𝑌) = 𝐴(𝑌)𝑋 

Thus, we get 

𝛻𝑋𝑌 = 𝐷𝑋𝑌 + 𝐴(𝑌)𝑋           (1.16) 

It is easy to verify that 

 (𝑎)𝑆′(𝑌, 𝑋) = 𝑢(𝑋, 𝑌) + 𝑔(𝑋, 𝑌)𝑇  (𝑏)𝑔(𝑆(𝑋, 𝑌, 𝑇)) = 0  (𝑐)𝑆(𝑋, 𝑌) =

𝑋‾‾  (𝑑)𝑆′(𝑌, 𝑋) = 𝑢(𝑋, 𝑇) + 𝐴(𝑋)𝑇  (𝑒)𝑆′(𝑋, 𝑌) − 𝑆′(𝑌, 𝑋) = 𝑆(𝑋, 𝑌)     (1.17) 

Theorem 1.  In an almost para contact manifold 𝑀𝑛, the torsion tensor of the semi-symmetric non-metric connection satis-

fies the following identities  (𝑎)𝑆(𝑋, 𝑇) = 𝑋‾  (𝑏)𝑆(𝑋‾‾, 𝑌) = 𝐴(𝑌)𝑋 − 𝐴(𝑋)𝐴(𝑌)𝑇  (𝑐)𝑆(𝑋‾‾, 𝑌) + 𝑆(𝑋, 𝑌‾‾) =

𝑆(𝑋, 𝑌)  (𝑑)𝑆(𝑋‾‾, 𝑌) − 𝑆(𝑋‾, 𝑇) = 0  (𝑒)𝐴(𝑆(𝑋, 𝑌)) = 0  (𝑓)𝑆(𝑋, 𝑌) = 𝑆(𝑋, 𝑌)‾‾       (1.18) 

Now we will establish certain identities among the (0,3) type tensors defined by [5] 

 𝑆′(𝑋, 𝑌, 𝑍) = 𝑔(𝑆(𝑋, 𝑌), 𝑍)  𝑎𝑛𝑑  𝑢′(𝑋, 𝑌, 𝑍) = 𝑔(𝑢(𝑋, 𝑌), 𝑍)     (1.19) 

or equivalently 

𝑆′(𝑋, 𝑌, 𝑍) = (𝑔(𝑌, 𝑇) 𝑔(𝑋, 𝑇) 𝑔(𝑌, 𝑍) 𝑔(𝑋, 𝑍) ) 

and 

𝑢′(𝑋, 𝑌, 𝑍) = (𝑔(𝑌, 𝑇) 𝑔(𝑍, 𝑇) 𝑔(𝑋, 𝑌) 𝑔(𝑋, 𝑍) ) 

Theorem 2.  The following relations hold in an almost metric manifolds  (𝑎)𝑢′(𝑋, 𝑌‾, 𝑍‾) = 𝑆′(𝑋‾, 𝑌‾, 𝑍) =

0  (𝑏)𝑢′(𝑋, 𝑌, 𝑍) = 𝑆′(𝑍, 𝑌, 𝑋)  (𝑐)𝑢′(𝑋, 𝑌, 𝑍) = −𝑢(𝑋, 𝑍, 𝑌)  (𝑑)𝑆′(𝑋, 𝑌, 𝑍) = −𝑆′(𝑌, 𝑋, 𝑍)  (𝑒)𝑆′(𝑋, 𝑌, 𝑍) −

𝑆′(𝑋, 𝑍, 𝑌) = 𝑢′(𝑋, 𝑌, 𝑍)  (𝑓)𝑢′(𝑋‾, 𝑌, 𝑍) − 𝑢′(𝑋, 𝑌‾, 𝑍) − 𝑢′(𝑋, 𝑌, 𝑍‾) = 0  (𝑔)𝑢′(𝑋‾‾, 𝑌, 𝑍) − 𝑢′(𝑋, 𝑍, 𝑌) = 0   
     (1.20) 

Theorem 3.  The connection 𝛻 , D and the (0,3) type tensor u’ of the almost para contact metric manifold (F,T,A,g) are re-
lated by the following 

 (𝑎)(𝛻𝑋𝐹)(𝑌, 𝑍) = (𝐷𝑋𝐹)(𝑌, 𝑍) = (𝐷𝑋𝐹)(𝑌, 𝑍) + 𝑢′(𝑋, 𝑌‾, 𝑍) −

𝑢′(𝑋, 𝑌, 𝑍‾)                 (1.21)  (𝑏)(𝛻𝑋𝐹)(𝑌, 𝑍) =

(𝐷𝑋𝐹)(𝑌‾, 𝑍‾)                                                                                                (1.22)   
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This proof is easy consequence of (1.5) and (1.6) (a). 

Corollory 1.  It follows from 2 that 
(𝛻𝑋𝐹)(𝑌, 𝑍) = (𝐷𝑋𝐹)(𝑌, 𝑍) iff 𝑢′(𝑋, 𝑌‾, 𝑍) = 𝑢′(𝑋, 𝑌, 𝑍‾ 

Theorem 4.  𝜵𝑿𝒀‾ = 𝑫𝑿𝒀‾ − 𝑭(𝑿, 𝒀)𝑻 

2. The Curvature Tensor 

We denote by R and K. The curvature tensor of the semi-symmetric non-metric connection 𝛻 and the Riemannian connec-
tion D respectively, i.e, 

 (𝑎)𝑅(𝑋, 𝑌)𝑍 = 𝛻𝑋𝛻𝑌𝑍 − 𝛻𝑌𝛻𝑋𝑍 − 𝛻[𝑋,𝑌]𝑍  𝑎𝑛𝑑  (𝑏)𝐾(𝑋, 𝑌)𝑍 = 𝐷𝑋𝐷𝑌𝑍 − 𝐷𝑌𝐷𝑋𝑍 − 𝐷[𝑋,𝑌]𝑍      (2.1) 

Then we state the following theorem 

Theorem 5.  The two-curvature tensor are related by the following relation 

 𝑅(𝑋, 𝑌)𝑍 = 𝐾(𝑋, 𝑌)𝑍 + 𝐴(𝐷𝑌𝑍)𝑋 − 𝐴(𝐷𝑋𝑍)𝑌 − 𝐴(𝑍)𝑆(𝑋, 𝑌) + 𝑋(𝐴(𝑍))𝑌 − 𝑌(𝐴(𝑍))𝑋      (2.2) 

3. The Nijenhuis Tensor 

In this section we study the Nijenhuis tensor n relation to the semi-symmetric non-metric connection and establish various 
identities involving it. The Nijenhuis tensor is defined as 

(𝑎)𝑁(𝑋, 𝑌) = [𝑋‾, 𝑌‾]  𝑎𝑛𝑑  (𝑏) 𝑁(𝑋, 𝑌) = [𝑋‾, 𝑌‾] + [𝑋, 𝑌]‾ − [𝑋, 𝑌]‾ − [𝑋, 𝑌‾]‾ − 𝐴([𝑋, 𝑌])𝑇      (3.1) 

If we put 

 𝐵(𝑋, 𝑌) = [𝑋, 𝑌]‾‾ + [𝑋, 𝑌]  𝑎𝑛𝑑  𝑊(𝑋, 𝑌) = [𝑋‾, 𝑌] + [𝑋, 𝑌‾]     (3.2) 

Then (3.1) (a) reduces to 

𝑁(𝑥, 𝑌) = 𝐵(𝑥, 𝑌) − 𝑊(𝑋, 𝑌)  

Further if we put 

 (𝑎)𝐵(𝑋, 𝑌, 𝑋) = 𝑔(𝐵(𝑋, 𝑌), 𝑍)  (𝑏)𝑊(𝑋, 𝑌, 𝑋) = 𝑔(𝑊(𝑋, 𝑌), 𝑍)  (𝑐)𝑁(𝑋, 𝑌, 𝑋) = 𝑔(𝑁(𝑋, 𝑌), 𝑍)     (3.3) 

Then it is evident from the definitions that 

𝑁(𝑋, 𝑌, 𝑋) = 𝐵(𝑋, 𝑌, 𝑋) − 𝑊(𝑋, 𝑌, 𝑋)         (3.4) 

Theorem 6.  The Nijenhuis tensor N defined on 𝑀𝑛 with the Riemannian connection D satisfies the following identity 
𝑁(𝑋, 𝑌) = (𝐷𝑋‾𝑓)(𝑌) − (𝐷𝑌‾𝑓)(𝑋) − (𝐷𝑋𝑓‾(𝑌) + (𝐷𝑌𝑓‾(𝑋)            (3.5) 

Theorem 7.  B(X,Y) defined by (3.2)(a) satisfies the following equation  

𝐵(𝑋, 𝑌) = 𝛻𝑋‾𝑌‾ − 𝛻𝑌‾𝑋‾ + 𝛻𝑋𝑌 − 𝐴([𝑋, 𝑌]) − 𝑆(𝑋, 𝑌)        (3.6) 

Remark 1: 
let 𝛻 be a semi-symmetric non-metric f-connection over 𝑀𝑛, then from (3.5) we have 

𝐵(𝑋, 𝑌) = [𝑋, 𝑌] + 𝐴([𝑋, 𝑌]) + (𝛻𝑋‾𝑌 − 𝛻𝑌‾𝑋)‾         (3.7) 
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Theorem 8.  An almost paracontact metric structure with semi-symmetric non-metric f-connection has vanishing Nijenhuis 
tensor 

Proof: 
from (3.5) and (1.16) we have 

𝑁(𝑋, 𝑌)  = 𝛻𝑋‾𝑓𝑌 − 𝑓𝛻𝑋‾𝑌 − 𝛻𝑋𝑓𝑌‾ + 𝑓𝛻𝑋𝑌‾ + 𝛻𝑌𝑓𝑋‾ − 𝑓𝛻𝑌𝑋‾  = 𝛻𝑋‾𝑓)(𝑌) − (𝛻𝑋‾𝑓) − (𝛻𝑋𝑓)(𝑌)‾ + (𝛻𝑌𝑓)(𝑋)‾  
In view of 𝜵 being semi-symmetric non-metric f-connection the Nijenhuis vanishes. 

4. Conclusion 

In this paper, we have concluded that in an almost para contact metric, the connection 𝛻 , D and (0,3) type tensor u’ are 
related by- 

 (𝑎)(𝛻𝑋𝐹)(𝑌, 𝑍) = (𝐷𝑋𝐹)(𝑌, 𝑍) = (𝐷𝑋𝐹)(𝑌, 𝑍) + 𝑢′(𝑋, 𝑌‾, 𝑍) − 𝑢′(𝑋, 𝑌, 𝑍‾)  (𝑏)(𝛻𝑋𝐹)(𝑌, 𝑍)
= (𝐷𝑋𝐹)(𝑌‾, 𝑍‾)                                                                                                  

The two-curvature tensor of semi-symmetric non-metric connection𝛻 and Riemannian connection D are related as     

𝑅(𝑋, 𝑌)𝑍 = 𝐾(𝑋, 𝑌)𝑍 + 𝐴(𝐷𝑌𝑍)𝑋 − 𝐴(𝐷𝑋𝑍)𝑌 − 𝐴(𝑍)𝑆(𝑋, 𝑌) + 𝑋(𝐴(𝑍))𝑌 − 𝑌(𝐴(𝑍))𝑋 

And, also in view of being semi-symmetric non-metric f-connection, the Nijenhuis Tensor vanishes. 
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