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  Abstract 

Deep learning has had a profound impact on computer science in recent years, with 
applications to image recognition, language processing, bioinformatics, and more. 
Recently, Cohen et al. provided theoretical evidence for the superiority of deep learn-
ing over shallow learning. We formalized their mathematical proof using Isa-
belle/HOL. The Isabelle development simplifies and generalizes the original proof, 
while working around the limitations of the HOL type system. To support the formali-
zation, we developed reusable libraries of formalized mathematics, including results 
about the matrix rank, the Borel measure, and multivariate polynomials as well as a 
library for tensor analysis. 
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1. Introduction  

Deep learning algorithms enable computers to perform tasks that seem beyond what we can program them to do using tra-

ditional techniques. In recent years, we have seen the emergence of unbeatable computer go players, practical speech 

recognition systems, and self- driving cars. These algorithms also have applications to image recognition, bioinformatics, and 

many other domains. Yet, on the theoretical side, we are only starting to understand why deep learning works so well. Re-

cently, Cohen et al. [6] used tensor theory to explain the superiority of deep learning over shallow learning for one specific 

learning architecture called convolutional arithmetic circuits (CACs). 

    Machine learning algorithms attempt to model abstractions of their input data. A typical application is image recogni-
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tion, e.e., classifying a given image in one of several categories, depending on what the image depicts. The algorithms are 

usually learned from a set of data points, each specifying an input (the image) and a desired output (the category). This 

learning process is called training. The algorithms generalize the sample data, allowing them to imitate the learned output on 

previously un-seen input data. 

    CACs impose the structure of the popular convolutional neural networks (CNNs) onto sum–product networks, using al-

ternating convolutional and pooling layers, which are realized as collections of sum nodes and product nodes, respectively. 

These networks can be shallower or deeper—i.e., consist of few or many layers—and each layer can be arbitrarily small or 

large, with low or high arity sum nodes. CACs are equivalent to similar networks, which have been demonstrated to perform 

at least as well as CNNs [5]. 

    As an exercise in mechanizing modern research in machine learning, we developed formal proof of the funda-mental 

theorem with and without weight sharing using the Isabelle/HOL proof assistant [17,18]. To simplify our work, we recast the 

original proof into a more modular version, which generalizes the result as follows: S is not only a Lebesgue null set, but also 

a subset of the zero set of a nonzero multivariate polynomial. This stronger theorem gives a clearer picture of the expres-

siveness of deep CACs. 

    The formal proof builds on general libraries that we either developed or enriched. We created a library for tensors and 

their operations, including products, CP-rank, and matricization. We added the matrix rank and its properties to Thiemann 

and Yamada’s matrix library [27], generalized the definition of the Borel measure by Hölzl and Himmelmann [13], and ex-

tended Lochbihler and Haftmann’s polynomial library [12] with various lemmas, including the theorem stating that zero sets 

of nonzero multivariate polynomials are Lebesgue null sets. For matrices and the Lebesgue measure, an issue we faced was 

that the definitions in the standard Isabelle libraries have too restrictive types: the dimensionality of the matrices and of the 

measure space is parameterized by types that encode numbers, whereas we needed them to be on terms. 

2. ISABELLE/HOL  

Isabelle [17,18] is a generic proof assistant that supports many object logics. The metalogic is based on an intuitionistic frag-

ment of Church’s simple type theory [4]. The types are built from type variables α, β… and n-ary type constructors, normally 

written in postfix notation 

    (e.g., α list). The infix type constructor α ⇒ β is interpreted as the (total) function space from α to β. Function applica-

tions are written in a curried style (e.g., f x y). Anonymous functions x → yx are written λx. yx. The notation t :: τ indicates that 

term t has type τ . 

    Isabelle’s architecture follows the tradition of the theorem prover LCF [11] in implementing a small inference kernel 

that verifies the proofs. Trusting an Isabelle proof involves trusting this kernel, the formulation of the main theorems, the as-

sumed axioms, the compiler and runtime system of Standard ML, the operating system, and the hardware. Specification 

mechanisms help us define important classes of types and functions, such as inductive datatypes and recursive functions, 

without introducing axioms. Since additional axioms can lead to inconsistencies, it is generally good style to use these 

mechanisms. 

    Isabelle locales are a convenient mechanism for structuring large proofs. A locale fixes types, constants, and assump-

tions within a specified scope. For example, an informal math-ematical text stating “in this section, let A be a set of natural 

numbers and B a subset of A” could be formalized by introducing a locale AB_subset as follows: 

locale AB_subset = fixes A B :: nat set assumes B ⊆ A 

    Definitions made within the locale may depend on A and B, and lemmas proved within the locale may use the as-

sumption that B ⊆ A. A single locale can introduce arbitrarily many types, constants, and assumptions. Seen from the out-
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side, the lemmas proved in a locale are polymorphic in the fixed type variables, universally quantified over the fixed con-

stants, and conditional on the locale’s assumptions. It is good practice to provide at least one interpretation after defining a 

locale to show that the assumptions are consistent. For example, we can interpret the above locale using the empty set for 

both A and B by proving that ∅ ⊆  ∅: 

interpretation AB_subset_empty: AB_subset ∅∅   

using AB_subset_def by simp 

3. Mathematical Premliminaries  

3.1. Tensors   

Tensors can be understood as multidimensional arrays, with vectors and matrices as the one and two-dimensional cases. Each 

index corresponds to a mode of the tensor. For matrices, the modes are called row” and “column”. The number of modes is 

the order of the tensor. The number of values an index can take in a particular mode is the dimension in that mode. Thus, a 

real-valued tensor A ∈ RM1 ×···×MN of order N and dimension Mi in mode i contains Ad1 ,...,dN ∈ R for di ∈ {1 , . . . ,  Mi }. 

    The matricization [A] of a tensor A is a matrix obtained by rearranging A’s entries using a bijection between the tensor 

and matrix entries. It has the following property: 

Lemma 1 Given a tensor A , we have rank [A ] ≤ CP-rank A. 

3.2. Lesbegue Measure    

The Lebesgue measure is a mathematical description of the intuitive concept of length, surface, or volume. It extends this 

concept from simple geometrical shapes to many subsets of Rn, including all closed and open sets, although it is impossible to 

design a measure that caters for all subsets of Rn while maintaining intuitive properties. The sets to which the Lebesgue 

measure can assign a volume are called measurable. The volume that is assigned to a measurable set can be a nonnegative 

real number or ∞. A set of Lebesgue measure 0 is called a null set. If a property holds for all points in Rn except for a null set, 

the property is said to be held almost everywhere. 

    Lemma 2 If p ≠ 0 is a polynomial in d variables, the set of points x ∈ Rd with p(x) = 0 is lebesgue null set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Definition and hierarchical structure of CAC with d layers 

 

𝑢0,𝑗 = 𝑥𝑗 ∈ ℝ𝑀 

𝑣0,𝑗 = 𝑤0.𝑗  . 𝑢0.𝑗 ∈ ℝ𝑟0 

𝑢1.𝑗 = 𝑣0,2𝑗−1 ∗ 𝑣0,2𝑗 ∈ ℝ𝑟0  

𝑣1,𝑗 = 𝑤1,𝑗 . 𝑢1.𝑗 ∈ ℝ𝑟1 

               . 

               . 
𝑣𝑑−1,𝑗 = 𝑣𝑑−2,2𝑗−1  ∗  𝑣𝑑−2,2𝑗 

∈ ℝ𝑟𝑑−2 

 

𝑣𝑑−1,𝑗 = 𝑤𝑑−1,𝑗 . 𝑢𝑑−1,𝑗 ∈ ℝ𝑟𝑑−1  

𝑢𝑑,1 = 𝑢
𝑑−1,1

∗…𝑉
𝑑−1,𝑁/2𝑑−1

 
∈ ℝ𝑟𝑑−1  

𝑦 = 𝑣𝑑,1 = 𝑤𝑑,1.𝑢𝑑,1
∈ ℝ𝑦 

 



S. Rizvi, C. Singh, 
 

 

ISSN (Online) : 2583-1372 4 
Journal of Applied Science and Education  

(JASE) 
A2Z Journals 

 

 

4. The Theorems of Network Capacity 

 

    A CAC is defined by the following parameters: the number of input vectors N , the depth d, and the dimensions of the 

weight matrices r− 1 , . . . ,  rd . The number N must be a power of 2 and d can be any number between 1 and log2 N . The size of 

the input vectors is M = r−1 and the size of the output vector is Y = rd . 

    The evaluation of a CAC—i.e., the calculation of its output vector given the input vectors depends on learned weights. The 

results by Cohen et al. are concerned only with the expressiveness of these networks and are applicable regardless of the 

training algorithm. The weights are organized as entries of a collection of real matrices Wl, j of dimension 

rl × rl−1, where l is the index of the layer and j is the position in that layer where the matrix is used. A CAC has shared 

weights if the same weight matrix is applied within each layer l—i.e., Wl,1 = · · ·  = Wl,N/2l . The weight space of a CAC is the space 

of all possible weight configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A CAC with concrete weights evaluated on concrete input vectors 

    Theorem 3 (Fundamental theorem of network capacity) We consider two CACs with identical N, M, and Y parameters: a deep 

network of depth d = log2 N with weight matrix dimensions r1,l and a shallow network of depth d = 1 with weight matrix 

dimensions r2,l. Let r = min (r1,0, M) and assume r2,0 < r N/2. Let S be the set of configurations in the weight space of the 

deep network that express functions also expressible by the shallow network. Then S is a Lebesgue null set. This result holds 

for networks with and without shared weights. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Evaluation formulas and hierarchical structure of a shallow CAC 
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    Theorem 4 (Generalized Theorem of Network Capacity) Consider two CACs with identical N, M and Y parameters: a 

deeper network of depth d1 and weight matrix dimension r1,l and a shallower network of depth d2 < d1 with weight matrix 

dimension  

r2, l . Let r = min{M, (r1,0,… r1, d2-1) and assume  

r2, d2 -1< r N/2 d2.  

    Let S be the set of configurations in the weight space of the deep network that express functions also expressible by the 

shallow network. Then S is a Lebesgue null set. This result holds for networks with and without shared weights 

5. Formal Libraries      

Our proof requires basic results in matrix, tensor, polynomial, and measure theory. For matrices and polynomials, Isabelle offers 

several libraries, and we chose those that seemed the most suitable. We adapted the measure theory from Isabelle’s analysis 

library and developed a new tensor library. 

5.1. Matrices       

We contributed a definition of the matrix rank, as the dimension of the space spanned by the matrix columns: 

definition (in vec_space) rank:: α mat ⇒ nat where 

rank A = vectorspace.dim F (span_vs (set (cols A))) 

5.2. Tensors        

The Tensor entry [24] of the Archive of Formal Proofs might seem to be a good starting point for the formalization of tensors. 

However, despite its name, this library does not contain a type for tensors. It introduces the Kronecker product, which is 

equivalent to the tensor product but operates on the matricizations of tensors. 

    The Group-Ring-Module entry [16] of the Archive of Formal Proofs could have been another potential basis for our 

work. Unfortunately, it introduces the tensor product in a very abstract fashion and does not integrate well with other Isa-

belle libraries. Instead, we introduced our own type for tensors, based on a list that specifies the dimension in each mode and 

a list containing all of its entries: 

    typedef α tensor = {(ds :: nat list, as :: α list). length as = ∏ds} 

    We formalized addition, multiplication by scalars, product, matricization, and the CP- rank. We instantiated addition as 

a semigroup (semigroup_add) and tensor product as a monoid (monoid_mult). Stronger type classes cannot be instantiated: 

their axioms do not hold collectively for tensors of all sizes, even though they hold for fixed tensor sizes. For example, it is 

impossible to define addition for tensors of different sizes while satisfying the cancellation property a + c = b + c −→□ aa=b. We left 

the addition of tensors of different sizes underspecified. For proving properties of addition, scalar multiplication, and prod-

uct, we devised a powerful induction principle on tensors, which relies on tensor slices. The induction step amounts to 

showing a property for a tensor A ∈ RM1 ×···×MN assuming it holds for all slices 

    Ai ∈ RM2 ×···×MN , which are obtained by fixing the first index i ∈ {1 , . . . ,  M1}.Matricization rearranges the entries of a ten-

sor A ∈ RM1 ×···×MN into a matrix [A ] ∈ RI×J for some suitable I and J . This rearrangement can be described as a bijection be-

tween {0 , . . . ,  M1 − 1} × · · ·  × {0 , . . . ,  MN − 1} and {0 , . . . ,  I − 1}× {0 , . . . ,   ,J -1)two sets {r1 < · · ·  < rK } ⨄ {c1 < · · ·  < cL } = {1,...,  

N }. The proof of Theorem 4 uses only standard matricization, which partitions the indices into odd and even numbers, but we 



S. Rizvi, C. Singh, 
 

 

ISSN (Online) : 2583-1372 6 
Journal of Applied Science and Education  

(JASE) 
A2Z Journals 

 

 

. 

formalized the more general formulation [1]. The matrix [A ] has I = ∏ 𝑟𝑖
𝑘
𝑖=1  rows and J = ∏ 𝑐𝑖

𝐿
𝐽=1  columns. The rear-

rangement function is (𝑖1, ….. 𝑖𝑁) →∑ (𝑖𝑟𝑘
∏ 𝑀𝑟

𝑘′
𝑘−1
𝑘′=1

𝐾
𝑘=1 ), (∑ (𝑖𝑐𝑙

∏ 𝑀𝑐
𝑙′

𝑙−1
𝑙′=1

𝐿
𝑙=1 )) 

    The indices 𝑖𝑟1
, … , 𝑖𝑟𝑘

and 𝑖𝑐1
, … , 𝑖𝑐𝐿

 serve as digits in a mixed -base numeral system to specify the row and the column 

in the matricization. Expand the sum and product operators and factor out the bases 𝑀𝑖  

(𝑖1, ….. 𝑖𝑁) → (𝑖𝑟1
+𝑀𝑟1

 .( 𝑖𝑟2
+𝑀𝑟2

 .  .. …𝑖𝑟𝐾−1
+𝑀𝑟𝐾−1

. 𝑖𝑟𝐾
) … )), 

                        (𝑖𝑐1
+𝑀𝑐1

 .( 𝑖𝑐2
+𝑀𝑐2

 .  .. …𝑖𝑐𝐿−1
+𝑀𝑐𝐿−1

. 𝑖𝑐𝐾
) … )), 

5.3. Lebesgue Measure         

At the time of our formalization work, Isabelle’s analysis library defined only the Borel measure on Rn but not the closely 

related Lebesgue measure. The Lebesgue measure is the completion of the Borel measure. The two measures are identical 

on all sets that are Borel measurable, but the Lebesgue measure can measure more sets. Following the proof by Cohen et al., 

we can show that the set S defined in Theorem 4 is a subset of a Borel null set. It follows that S is a Lebesgue null set, but not 

necessarily a Borel null set. 

    To resolve this mismatch, we considered three options: (1).Prove that S is a Borel null set, which we believe is the case, alt-

hough it does not follow trivially from S’s being a subset of a Borel null set; (2)Define the Lebesgue measure, using the already 

formalized Borel measure and measure completion.; (3)Use the Borel measure whenever possible and use the al-

most-everywhere quantifier (∀ae) otherwise. We chose the third approach, which seemed simpler. Theorem 4, defines S as the 

set of configurations in the weight space of the deeper network that express functions also expressible by the shallower net-

work, and then asserts that S is a null set. In the formalization, we state this as follows: almost everywhere in the weight space of 

the deeper network, the deeper network expresses function not expressible by the shallower network. This formulation is 

equivalent to asserting that S is a subset of a null set, which we can easily prove for the Borel measure as well. 

    There is, however, another issue with the definition of the Borel measure from Isabelle’s analysis library: 

definition lborel :: (α :: euclidean_space) measure were 

lborel = distr (∏M b ∈ Basis. interval_measure (λx. x)) borel 

(λf. ∑ b∈Basis. f b∗𝑅𝑏) 

    The type α specifies the number of dimensions of the measure space. In our proof, the measure space is the weight space 

of the deeper network, and its dimension depends on the number N of inputs and the size rl of the weight matrices. The 

number of dimensions is a term in our proof. We described a similar issue with Isabelle’s matrix library already. 

    The solution is to introduce a new notion of the Borel measure whose type does not fix the number of dimensions. This 

multidimensional Borel measure is the product measure (∏ M)  of the one-dimensional Borel measure (lborel :: real meas-

ure) with itself: 

definition lborelf :: nat ⇒ (nat ⇒ real) measure where 

lborelf n = ( ∏ M b ∈ {. .< n}. lborel) 

5.4. Multivariate Polynomials          

Several multivariate polynomial libraries have been developed to support other formalization projects in Isabelle. Sternagel 

and Thiemann [26] formalized multivariate polynomials designed for execution, but the equality of polynomials is a custom 

predicate, which means that we cannot use Isabelle’s simplifier to rewrite polynomial expressions. Immler and Maletzky [13] 

formalized an axiomatic approach to multivariate polynomials using type classes, but their focus is not on the evaluation ho-

momorphism, which we need. Instead, we chose to extend a previously unpublished multivariate polynomial library by 
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Conv α (α cac) Input nat 

Lochbihler and Haftmann [11]. We derived induction principles and properties of the evaluation homomorphism and of nested 

multivariate polynomials. These were useful to formalize Lemma: 

lemma lebesgue_mpoly_zero_set: 

fixes p :: real mpoly 

assumes p ≠ 0 and vars p ⊆ {. .< n} 

shows {x ∈ space (lborelf n). insertion x p = 0}∈ null_sets (lborelf n) 

6. Formalization of the Fundamental Theorem           

With the necessary libraries in place, we undertook the formal proof of the fundamental theorem of network capacity, 

starting with the CACs. A recursive datatype is appropriate to capture the hierarchical structure of these networks: 

datatype α cac = |     | 

 

    To simplify the proofs, Pool nodes are always binary. Pooling layers that merge more than two branches are repre-

sented by nesting Pool nodes to the right. The type variable α can be used to store weights. For networks without weights, 

it is set to nat × nat, which associates only the matrix dimension with each Conv node. For networks with weights, α is 

real mat, an actual matrix. These two network types are connected by insert_weights, which inserts weights into a weight-

less network, and its inverse extract_weights :: bool ⇒ real mat cac ⇒ nat ⇒ real, which retrieves the weights from a net-

work containing weights. 

fun insert_weights :: bool ⇒ (nat × nat) cac ⇒ (nat ⇒ real) ⇒ real mat cac where 

insert_weights shared (Input M) w = Input M 

| insert_weights shared (Conv (r, c) m) w = 

Conv (extract_matrix w r c) (insert_weights shared m (λi. w (i + r ∗ c))) 

| insert_weights shared (Pool m1 m2) w = 

Pool (insert_weights shared m1 w) (insert_weights shared m2 

(if shared then w else (λi. w (i + count_weights shared m1)))) 

fun extract_weights :: bool ⇒ real mat convnet ⇒ nat ⇒ real where 

extract_weights shared (Input M) i = 0 

| extract_weights shared (Conv A m) i = 

if i < dimr A ∗ dimc A then flatten_matrix A i  

else extract_weights shared m (i − dimr A ∗ dimc A) 

| extract_weights shared (Pool m1 m2) i = 

if i < count_weights shared m1 then extract_weights shared m1 i 

else extract_weights shared m2 (i − count_weights shared m1) 

    The first argument of these two functions specifies whether the weights should be shared among the Conv nodes of 

the same layer. The weights are represented by a function w, of which only the first k values w 0, w 1, . . . ,w(k  − 1) are used. 

Given a matrix, flatten_matrix creates such a function representing the matrix entries. Sets over nat ⇒ real can be measured 

using lborelf. The count_weights function returns the number of weights in a network. 

    The next function describes how the networks are evaluated: 

fun evaluate_net :: real mat cac ⇒ real vec list ⇒ real vec where 

evaluate_net (Input M) is = hd is 

| evaluate_net (Conv A m) is = A ⊗mv evaluate_net m is 

Pool (α cac) (α cac) 
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| evaluate_net (Pool m1 m2) is = component_mult 

(evaluate_net m1 (take (length (input_sizes m1)) is)) 

(evaluate_net m2 (drop (length (input_sizes m1)) is)) 

    where ⊗mv multiplies a matrix with a vector, and component_mult multiplies vectors component wise. 

    The cac type can represent networks with arbitrary nesting of Conv and Pool nodes, going beyond the definition of CACs.     

Moreover, since we focus on the fundamental theorem, it suffices to consider a deep model with d1 = log2 N and a shallow 

model with d2 = 1. These are specified by generating functions: 

fun 

deep_model0 :: nat ⇒ nat list ⇒ (nat × nat) cac and 

deep_model :: nat ⇒ nat ⇒ nat list ⇒ (nat × nat) cac 

where 

deep_model0 Y [] = Input Y 

| deep_model0 Y (r # rs) = Pool (deep_model Y  r rs) (deep_model Y  r rs) 

| deep_model Y  r rs = Conv (Y, r) (deep_model0 r rs) 

 

fun shallow_model0 :: nat ⇒ nat ⇒ nat ⇒ (nat × nat) cac where 

shallow_model0 Z M 0 = Conv (Z, M) (Input M) 

| shallow_model0 Z M (Suc N) = Pool (shallow_model0 Z M 0) (shallow_model0 Z M N) 

 

 

 

 

 

 

 

 

 

 

 

    a) deep _model Y r1 [r0, M]                            b) shallow_model Y Z M 3 

 

Figure 4. A deep and shallow network represented using the CAC datatype 

 

definition shallow_model :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ (nat × nat) cac where 

shallow_model Y  Z M N = Conv (Y, Z) (shallow_model0 Z M N) 

    Two examples are given in Fig. 4. For the deep model, the arguments Y # r # rs correspond to the weight matrix sizes 

[r1,d (= Y ), r1,d−1, . . . ,  r1,0, r1,−1 (= M)]. For the shallow model, the arguments Y , Z, M correspond to the parameters r2,1 

(= Y), r2,0, r2,−1 (= M), and N gives the number of inputs minus 1. 

    Step I The following operation computes a list, or vector, of tensors representing a net- work’s function, each tensor 

standing for one component of the output vector: 

fun tensors_from_net :: real mat cac ⇒ real tensor vec where 

tensors_from_net (Input M) = Matrix.vec M (λi. unit_vec M i) 



S. Rizvi, C. Singh, 
 

 

ISSN (Online) : 2583-1372 9 
Journal of Applied Science and Education  

(JASE) 
A2Z Journals 

 

 

| tensors_from_net (Conv A m) = 

mat_tensorlist_mult A (tensors_from_net m) (input_sizes m) 

| tensors_from_net (Pool m1 m2) = 

Component_mult (tensors_from_net m1) (tensors_from_net m2) 

lemma tensors_from_net_eqI: 

assumes valid_netʹ m1 and valid_netʹ m2 and input_sizes m1 = input_sizes m2 

and ∀is. input_correct is −→□ evaluate_net m1 is = evaluate_net m2 is 

    shows tensors_from_net m1 = tensors_from_net m2 

    The fundamental theorem is a general statement about deep networks. It is useful to fix the deep network parameters 

in a locale: 

locale deep_model_correct_params  

fixes rs :: nat list and shared :: bool 

assumes length rs ≥ 3 and ∀r ∈ set rs. r > 0 

The list rs completely specifies one specific deep network model: 

abbreviation deep_net :: (nat × nat) cac where 

    deep_net = deep_model (rs ! 0) (rs ! 1) (tl (tl rs)) 

    The parameter shared specifies whether weights are shared across Conv nodes within the same layer. The other pa-

rameters of the deep network can be defined based on rs and shared: 

definition r :: nat where r = min (last rs) (last (butlast rs)) 

definition N_half :: nat where N_half = 2 length rs − 3 

definition weight_space_dim :: nat where 

    weight_space_dim = count_weights shared deep_net 

    The shallow network must have the same input and output sizes as the deep network to express the same function as 

the deep network. This leaves only the parameter Z = r2,0, which specifies the matrix weight sizes in the Conv nodes and the 

size of the vectors multiplied in the Pool nodes of the shallow network: 

abbreviation shallow_net :: nat ⇒ (nat × nat) cac where 

    shallow_net Z = shallow_model (rs ! 0) Z (last rs) (2 ∗ N_half − 1) 

    Following the proof sketch, we consider a single output component yi . We rely on a second locale that introduces a con-

stant i for the index of the considered output component. We provide interpretations for both locales. 

locale deep_model_correct_params_output_index = deep_model_correct_params + 

fixes i :: nat 

assumes i < rs ! 0 

    Then we can define the tensor Ai, which describes the behavior of the function expressed by the deep network at the 

output component yi , depending on the weight configuration w of the deep network: 

definition A i :: (nat ⇒ real) ⇒ real tensor where 

    A i w = tensors_from_net (insert_weights shared deep_net w) ! i 

    We want to determine for which w the shallow network can express the same function and is hence represented by the 

same tensor. 

    Step II We must show that if a tensor A represents the function expressed by the shallow network, then r2,d2 −1 ≥ 

CP-rank (ϕ(A )).  

    For the fundamental theorem, ϕ is the identity and d2 = 1. Hence, it suffices to prove that Z = r2,0 ≥ CP-rank (A ): 
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lemma cprank_shallow_model: 

cprank (tensors_from_net (insert_weights shared w (shallow_net Z)) ! i) ≤ Z 

This lemma can be proved easily from the definition of the CP-rank. 

Step III We define the polynomial p and prove that it has properties IIIa and IIIb. Defining 

p as a function is simple: 

definition pfunc :: (nat ⇒ real) ⇒ real where 

pfunc w = det (submatrix [A i w] rows_with_1 rows_with_1) 

    where [A i w] abbreviates the standard matricization matricize {n. even n (A i w), and rows_with_1 is the set of row 

indices with 1s in the main diagonal for a specific weight configuration w defined in step III b. Our aim is to make the sub-

matrix as large as possible while maintaining property that p is not the zero polynomial. The bound-on Z in the 

    statement of the final theorem is derived from the size of this submatrix. 

 The function pfunc must be shown to be a polynomial function. We introduce a predicate 

 polyfun that determines whether a function is a polynomial function: 

 definition polyfun :: nat set ⇒ ((nat ⇒ real) ⇒ real) ⇒ bool where 

polyfun N  f ←→ ∃p. vars p ⊆ N ∧ ∀x. insertion x p = f  x  

 This predicate is preserved from constant and linear functions through the tensor representation of the CAC, matriciza-

tion, choice of submatrix, and determinant: 

lemma polyfun_p: 

polyfun {..< weight_space_dim} pfunc 

Step IIIa We must show that if p(w) ≠ 0, then CP-rank (Ai(w)) ≥ r N/2. The Isar proof is sketched below: 

lemma if_polynomial_0_rank: 

assumes pfunc w ≠ 0 

shows rN_half ≤ cprank (A i w) 

Proof -  

have rN_half = dimr (submatrix [A i w] rows_with_1 rows_with_1) 

by calculating the size of the submatrix 

also have · · ·  ≤ mrank [A i w] 

also have · · ·  ≤ cprank (A i w) using Lemma (Given a tensor A , we have rank [A ] ≤CP-rank A. 

Finally, show? thesis . 

qed 

    Step IIIb To prove that p is not the zero polynomial, we must exhibit a witness weight configuration where p is nonzero. 

Since weights are arranged in matrices, we define concrete matrix types: matrices with 1s on their diagonal and 0s elsewhere 

(id_matrix), matrices with 1s everywhere (all1_matrix), and matrices with 1s in the first column and 0s elsewhere 

(copy_first_matrix). For example, the last matrix type is defined as follows: 

definition copy_first_matrix :: nat ⇒ nat ⇒ real mat where 

copy_first_matrix nr nc = mat nr nc (λ(r, c). if c = 0 then 1 else 0) 

    For each matrix type, we show how it behaves under multiplication with a vector: 

lemma mult_copy_first_matrix: 

assumes i < nr and dimv v > 0 

shows (copy_first_matrix nr (dimv v) ⊗mv v) ! i = v ! 0 

    Using these matrices, we can define the deep network containing the witness weights: 
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Fun 

witness0 :: nat ⇒ nat list ⇒ real mat cac and 

witness:: nat ⇒ nat ⇒ nat list ⇒ real mat cac 

were 

witness0 Y [] = Input Y 

| witness0 Y (r # rs) = Pool (witness Y  r rs) (witness Y  r rs) 

| witness Y  r [] = Conv (id_matrix Y r) (witness0 r []) 

| witness Y  r [a]= Conv (all1_matrix Y r) (witness0 r [a]) 

| witness Y  r (a# b # rs) = Conv (copy_first_matrix Y r) (witness0 r (a # b # rs)) 

    The network’s structure is identical to deep_model. For each Conv node, we carefully choose one of the three matrix types 

we defined, so that the representing tensor of this network has as many 1s as possible on the main diagonal and 0s else-

where. This in turn ensures that its matricization has as many 1s as possible on its main diagonal and 0s elsewhere. The 

rows_with_1 constant specifies the row indices that contain the 1s. 

    We extract the weights from the witness network using the function extract_weights: 

definition witness_weights :: nat ⇒ real where 

    witness_weights = extract_weights shared deep_net 

    We prove that the representing tensor of the witness network, which is equal to the tensor Ai witness_weights, has the 

desired form. This step is rather involved: we show how the defined matrices act in the network and perform a tedious induc-

tion over the witness network. Then we can show that the submatrix characterized by rows_with_1 of the matricization of 

this tensor is the identity matrix of size rN_half: 

lemma witness_submatrix: 

submatrix [A i witness_weights] rows_with_1 rows_with_1 = id_matrix rN_half rN_half 

    As a consequence of this lemma, the determinant of this submatrix, which is the definition of pfunc, is nonzero. There-

fore, p is not the zero polynomial: 

lemma polynomial_not_zero: 

pfunc witness_weights ≠ 0 

    Fundamental Theorem The results of steps II and III can be used to establish the fundamental theorem: 

Theorem fundamental_theorem_of_network_capacity: 

∀ae wd w.r.t. lborelf weight_space_dim. ∄ws Z. Z < rN_half ∧ 
∀is. input_correct is −→ 

 evaluate_net (insert_weights shared deep_net wd) is = 

 evaluate_net (insert_weights shared (shallow_net Z) ws) is 

Here, ‘∀ae x w.r.t. m. Px ’ means that the property Px holds almost everywhere with respect to the measure m. The r N_half 

bound corresponds to the size of the identity matrix in the witness_submatrix. 

7. Conclusion            

We applied for a proof assistant to formalize recent results in a field where they have been little used before, namely ma-

chine learning. We found that the functionality and libraries of a modern proof assistant such as Isabelle/HOL were mostly up 

to the task. Beyond the formal proof of the fundamental theorem of network capacity, our main contribution is a general 

library of tensors. Admittedly, even the formalization of short pen-and-paper proofs can require a lot of work, partly because 

of the need to develop and extend libraries. On the other hand, not only does the process led to a computer verification of 
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the result, but it can also reveal new ideas and results. The generalization and simplifications we discovered illustrate how 

formal proof development can be beneficial to research outside the small world of interactive theorem proving. 
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