&

—_—

Journal of Applied Science and Education, 2025,
Vol. 05, Iss. 02, S. No. 103, pp. 1-8
ISSN (Online): 2583-1372

M - Projective Curvature Tensor Equipped
with a -kenmotsu Manifold

N.V.C. Shukla!, Mantasha?

L Department of Mathematics and Astronomy,, University of Lucknow, Lucknow-226007, Uttar Pradesh, India
*nveshukla72 @gmail.com, 2mantasha4554@gmail.com

How to cite this paper:
N.V.C.Shukla, Mantasha, “M - pro-
jective curvature tensor equipped
with an e-kenmotsu manifold,”
Journal of Applied Science and Edu-
cation (JASE), Vol. 05, Iss. 02, S. No.
103, pp 1-8, 2025.

https://doi.org/10.54060/a2zjourna
Is.jase.103

Received: 12/02/2025
Accepted: 15/06/2025
Online First: 14/07/2025
Published: 14/07/2025

Copyright © 2025 The Author(s).
This work is licensed under the
Creative Commons  Attribution
International License (CC BY 4.0).
http://creativecommons.org/licens

es/by/4.0/

Abstract

In this paper, we studied the properties of e-Kenmotsu manifolds that possess an M
-projective curvature tensor. We have shown that e-Kenmotsu manifolds with
an M -projectively flat and irrotational M -projective curvature tensor are locally
isometric to the hyperbolic space Hn(c), where c = —€. Additionally, we have in-
vestigated the condition R (X, Y) S = O for M -projectively flat e-Kenmotsu mani-
folds. Then we focused on the analysis of e-Kenmotsu manifolds with a conservative
M -projective curvature tensor. Lastly, we have certain geometric results for
e-Kenmotsu manifolds that satisfy the relation M (X, Y)R =0.
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1. Introduction

The basic difference between Riemannian and semi-Riemannian geometry is the existence of a null vector. In a Rie-
mannian manifold (M, g), the signature of the metric tensor is positive definite, whereas the signature of a

semi-Riemannian manifold is indefinite. With the help of indefinite metric Bejancu and Duggal [1] introduced
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e-Sasakian manifolds. Then Xufeng and Xiaoli [13]proved that every e-Sasakian manifold must be a real hyperface of
some indefinite Kahler manifolds. Since Sasakian manifolds with indefinite metric have applications in Physics [1], we
are interested to study various contact manifolds with indefinite metric. Geometry of Kenmotsu manifolds originated
from Kenmotsu [10]. In [3] De and Sarkar introduced the notion of e-Kenmotsu manifolds with indefinite metric. On
the other hand, in [6] Eisenhart proved that if a Riemannian manifold admits a second order parallel syemmetric co-
variant tensor other than a constant multiple of the metric tensor, then it is reducible. Later on, several authors
investigated the Eisenhart problem on various spaces and obtained some interesting results. Recently, Haseeb and
De [7] have studied n-Ricci solitons in e-Kenmotsu manifolds. e-Kenmotsu manifolds have also been studied by
several authors such as ([2, 8,9, 13, 15]) and many others. So far, our knowledge about curvature symmetries have
not been studied in semi-Riemannian manifolds. In this paper, we are going to study curvature symmetries in
e-Kenmotsu manifolds. For curvature symmetries we refer the book of Duggal and Sharma [5]. Sharma [12] char-
acterised a class of contact manifold admitting a vector field keeping the curvature tensor invariant.

Definition 1.1. The M- projective curvature tensor of Riemannian manifold Mn was defined by Pokhariyal and Mishra
[18] is of the following form:

MX,Y)Z=RXY)Z —_

TS 2X — S 2V + gl 210X gt QYL ()

where Q is the Ricci operator defined on
S(Xv)=g(Qx ).

A space form (i.e., a complete simply connected Riemannian manifold of constant curvature) is said to be elliptic,
hyperbolic or Euclidean according as the sectional curvature tensor is positive, nega- tive or zero [5]. The authors ex-
tensively studied the properties of M - projective curvature tensor on the various manifolds(see, [?,9, 17, 20, 21, 26, 28].
In this paper, we have studied some special proper- ties of e- Kenmotsu manifold.The purpose of this paper is to study
the properties of M - projective curvature tensor in e- Kenmotsu manifolds.

The paper is organized as follows: Section 2 is concerned with preliminaries of e- Kenmotsu mani- folds. In sec-
tion 3, we study the M -projectively flat of e-Kenmotsu manifold. Section 4 deals with the M - projectively flat e-
Kenmotsu manifold satisfies the condition R (X, Y) = 0. In section 5, we study conservative M - projective curvature
tensor of e- Kenmotsu manifold. In section 6, irrota- tional M - projective curvature tensor of e- Kenmotsu mani-
fold are studied. Section 7 is devoted to studying - Kenmotsu manifold satisfies the condition M (X, Y)R = 0.

2. Preliminaries

An almost contact structure on a n-dimensional differentiable manifold M is a triple (&, &, n), where

¢ is a tensor field of type (1, 1), nis a 1-form and § is a vector field such that
$?=—1+ng ()
n(§) =1, ¢§=0,n¢ =0. (3)

A differentiable manifold with an almost contact structure is called an almost contact manifold. An almost con-

tact metric manifold is an almost contact manifold endowed with a compatible metric g. An almost contact metric

manifold M is said to be an e-almost contact metric manifold if

=,
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gl§§) =*1=¢ (4)
n(X) = eg(X, §), rank(¢) =n — 1, (5)
g(@X, ¢Y) =gX, V) —enX)n(Y), X, Y € (TM), (6)

holds, where ¢ is space-like or time-like but it is never a light like vector field. We say that (¢, & n, g) is an e-contact
metric structure if we have

dn(X, Y) = g(X, ¢Y). (7)

In this case, M is an e-contact metric manifold. An e-contact metric manifold is called an e-Kenmotsu manifold
[7]if

(Vx@)Y = —g(X, Y )§ — en(Y )X, (8)

holds, where V is the Riemannian connection of g. An e-almost contact metric manifold is a e-Kenmotsu manifold if
and only if

Vx§ = e(X — n(X)§). (9)

The following conditions holds in an e-Kenmotsu manifold [7]:

(Vxn)(Y)=g(X, Y) — en(X)n(Y), (10)

n(R(X, Y)2) = eg(X, 2)Y — g(Y, 2)X, (11)

R(X, Y)§ =n(X)Y —n(Y)X (12)

R(& X)Y =n(Y)X — eg(X, V) (13)

S(X, &) = —(n — 1)n(X), (14)

Q¢ = —e(n — 1) (15)

S(@X, @Y) =S(X, V) +e(n — 1)n(X)n(Y). (16)

for any vector fields X, Y, Z on M,where R, S and Q denotes the curvature tensor,Ricci tensor and Ricci operator on
M.

Definition 2:. An e- manifold M is said to be n-Einstein manifold if its Ricci tensor S is of the form

S(X V) =2A1g(X, V) +A2n(X)n(Y), (17)
for any vector fields X, Y ,where A1, A2 are smooth functions on M.

If A2 =0 ,then n-Einstein manifold becomes Einstein manifold. In view of (2) and (17), we have

QX = A1X + A2n(X)E (18)
Let us consider an e-Kenmotsu manifold. Then putting X =Y = e; in (17),i =1, 2, ...... n and taking sum-

mation for 1 < j < n, we have

r=nAt1 + €Az (19)
Now, setting X =Y =£in (17) and using (2) ,(3) and (14), we obtain
—(n—1)=€eA + A2 (20)

From the conditions (19) and (20), gives
r

A = e — (213
: (1 —n)
Ag= L0, 8L (22)
€ € (1 — n)e
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where, r is the scalar curvature.
In view of (8) — (11), it can be easily constructed that in n -dimensional e-kenmotsu manifold M , the M

-projective curvature tensor satisfies the following condition from (1.1):

1
M (X, Y)EE X))y — (v )X] — ﬂ[:l” — 1)A(Y )X +(n — 1)a(X)Y
n—
+en(Y.)QX — en(x)ay ]
1 1
M(E X)Y = jaLV)X —eg(X Y )] — —{ }[sqx, Y)E — en(y )ax] (23)
2ln—1

3. M -Projectively flat e-kenmotsu manifold

In this section, we study M-Projectively flat e-kenmotsu manifold .
Definition 3.1. The Lorentzian e-kenmotsu manifold M is said to be a M-projectively flat, if we have
M (X, Y)Z = 0. (24)
for any vector fields X, Y, Z on M.
By taking into account of relation (1) and using definition , we get

R(X, ¥)Z = [s(¥, 2)x — s(X, 2)Y +g(¥, 2)QX — g(X, Z)QY ], (23)

2(n — 1)
TakingZ=€in (25) and using relations (3), (12) and (14),we have
1
elnx — nlv )x] =

[aly Jax — a(xjay |, (26)
n—1

Again putting Y = £ in (26) and using (2), (3) in (14), we get

Qx = —-(n-1)eX, (27)

which on simplification gives,

S(X,Y)=-(n-1)eg(X, Y), (28)
which yields,

r=—-(n-1)g (29)

Thus, we get the following theorem.
Theorem If an n-dimensional e-kenmotsu manifold is M-Projectively flat ,then it is an Einstein manifold and its

Ricci tensor of M has the form

S(X,Y)=-(n-1)eg(X, Y). (30)
In consequences of (28) ,(25) becomes
R(X, Y)Z = -eg(Y, 2)X —g(X, 2)Y . (31)

A Space form is said to be hyperbolic if the sectional curvature tensor is negative [5]. Thus, we can state
Theorem 3.1. If an n-dimensional e-kenmotsu manifold is M -Projectively flat ,then it is either locally isometric to the

hyperbolic space H(c),where c = —e or M has the constant scalar curvature of the form —(n — 1)e.
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4. M -Projectively e-kenmotsu manifold satisfying the condi- tion R(X,Y ).S=0

In this section , we consider that manifold is an M -Projectively flat e-kenmotsu manifold satisfying the condition
R(X, Y ).S =0 .Thus we have
S(RIX,Y)Z U)+S(Z R(X, Y)U) =0. (32)
In view of (25) in (32), we have
m[S{QX, Ulaly, 2) —s(av, U)glx, 2) + s(ax, Z)g(y, U) — s(Qv, Z)g(x, U)] = 0. (33)
Putting Y =Z = £ in (33) and using the relation (2), (3) and (14), then we have

1
m[Sl[QX; Ulgl& € — 5(Q Ulglx, & + slax, §al U) — aglx, U)SIQE § =01 (G4

Again, using (14) in (34) ,we have
€s(QX, U) - (n -1)’n(U)n(X) + en(U)S(QX, §) —€(n -1)’g(X, U) = 0.  (35)
Let A be the eigen value of endomorphism Q corresponding to an eigen-vector X. Then putting
QX =AX in (35) and using the relation g(QX, Y) = S(X, Y), then we find that
eA’g(X, U) = (n = 1)’n(U)n(X) - €A(n - 1)n(U)n(X) - €(n - 1)’g(X, U) = 0 (36)
Now, putting U = £in (36), we get

[A2+€eA(n-1)-2(n-1)%€]n(X) = 0. (37)
In this case , since n(X)/4 0, the relation (37) gives that
[A2+e(n-1)A-2(n-1)%€?] = 0. (38)

From the above equation it follows that the endomorphism Q has two different non-zero eigen val- ues,namely,
2(n - 1)e and -3(n - 1)e. Hence, we state the following theorem
Theorem 4.1. Let M be an n-dimensional M -Projectively e-kenmotsu manifold satisfying the con- dition R(X, Y ).S =
0, then symmetric endomorphism Q of the tangent space corresponding to S has two diflerent non-zero eigen val-

ues.

5. Conservative M -Projective curvature tensor on e-kenmotsu manifold

Definition 5.1. An e-kenmotsu manifold (M, g) is said to be M-Projective conservative if
divM =0, (39)

where div denotes the divergence.

Taking the covariant derivative of (1), we get

(VuM)X, ¥)Z = (VR VIZ = 2= [(V, S)(Y, 2X — (Vo SUX 2)Y

2ln (40)

+g(Y, ZUVy ax — glx, (Ve Q)Y ]

Contracting with respect to U in (40), we obtain

1
7 —(V, S)X
2 (VxS 2 = (S 2) an

+gl¥, ZdivQX — glX, Z)divQY ]

(divM }(X, ¥ )Z = (divR)(X, Y )Z —

We know that
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1.
Hiva(x) = ZVir (42)
(diviv )(X, Y )Z = (divR)(X, Y )Z —

(V.SUY, Z2) — (V, 3UX 2)
2(n — 1}l (43)

] 1
+5alY, 2N — 906 2V 1]
But from [7],we have

divR = (V.S)IY, 2) — (Vy S)X, 2). (44)
Again, by virtue of (39) and (44) in (43) ,it reduces to

1
7 v e i — 7o — 7. 1. 45
kVxsiv 2 — (9, 2on — 3 DV xr = glx, 2V 1 (43)

Putting X = £ in (45),we get

1
7 _ oML L) ] — — . 46
(VY. 2) — (V, Son 3l AVe ~ ol 2V 1 (6)

Further, we know that

(VeS)(X, V) = &S(X, V) =S(VeX)Y —S(X, VeY') (47)
(Lxg)(Y, 2) = Lxg(Y, Z) - g(LxY, 2) - g(Y, LxZ) (48)
Now put X =€ in (48) and using (10)

(Leg)(Y, 2) = g(Vv & 2) + g(Y, V) (49)
(Leg)(Y, 2) = 2€lg(Y, 2) —n(Y )n(2)] (50)
Notice that g(QX, Y) = S(X, Y) and using (50),we get

(LeS)Y, 2) = 2€[S(Y, 2) + (n - 1)n(Y )n(2)] (51)
Making use of (10) and (51) in (47) ,we get

(VesS)(Y, 2) = O, (52)
which yields

Ver = 0. (53)

In view of (45) and making use of (3), (10), (16) ,(52) and (53),we obtain

esty, 2) + (h — 1)aly, 2) = —;ma;mr ) (34)
2(2n — 3)

Now interchanging Y by ¢Y and Z by ¢Z in (54) and using (3), (7) and (10), we get

1

S(Yo 2) = ——(n — 1)g(y, 2) + (e — L)a(Y )nl2) (35)

€
Hence ,we state the following:

Theorem 5.1. Let M be an n-dimensional M -Projective curvature tensor on e-kenmotsu manifold is conservative,

then M is an n-Einstein manifold and Ricci tensor of M has the form S(Y, Z) =

—&n-1)g&v, 2) + (e - 1)n(Y )n(2)

Theorem 5.2. Let M be an n-dimensional M -Projective curvature tensor on e-kenmotsu manifold is conservative,

then M is an Einstein manifold if taking € = 1 and Ricci tensor of M has the form S(Y, Z) = -1 (n - 1)g(Y, 2)
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6. Irrotational M -Projective curvature tensor on e-kenmotsu manifold

Definition 6.1. The rotation (curl) of M-Projective curvature tensor on an e-kenmotsu manifold
M is defined as,
RotM = (VuM)(X, Y )Z + (VxM)(U, Y)Z + (Vy M)(X, U)Z = (VzM)(X, Y )U. (56)

In consequence of Binachi second identity for Riemannian connection V,(56) becomes

RotM = —(VzM)(X, Y )U. (57)
If the M-Projective curvature tensor is irrotatinal, then curIM =0 and so by (57), we get

(VzM)(X, YU =0, (58)
which gives
VAM (X, Y)U) = M(VzX, Y)U + M (X, VzY)U + M (X, Y)VzU. (59)
Putting U = £ in (59),we obtain
VAM (X, Y)E) = M(VzX, Y)E + M (X, VzY )€ + M(X, Y )VZE. (60)
Now ,substituting Z = € in (1) and using the relation (2, 3, 12, 14) and (18), we obtain
M(X, Y)§ = Aln(X)Y —n(Y X], (61)
where,

A= L, _=A1 (62)

2 2{m — 1)

By virtue of (62) and (10) in (60),we have

A
nM(x, Y.)Z = Jalz X}y — gz, v )x]. (63)
=
In view of (1) and (63), we have
Aoz xv —az v =R v)Z - 1[5, 2% — six 2y
€ 2{n — 1) (64)

+g(¥, Z)Qx — g{X, Z)ay ]

Contracting above equation (64) over X and using (62),we get

%)= glv. A ——- Yo = 1) 63)

sty 2) 2{n — 1) €

n
from (65) ,we have
r=—2Yn — 12 (66)
=

Thus, we state the following theorem:
Theorem 6.1. If the M -Projective curvature tensor on an e-kenmotsu manifold M is irrota- tional,then the
manifold is an Einstein manifold with constant scalar curvature —2(n - 1)
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