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  Abstract 

In this research paper, the Runge-Kutta method is used to minimize the error estima-
tion in solving the problem of ordinary differential equations. By using the 
Runge-Kutta method, we can construct a higher- order accurate functions without 
having to calculate higher-order derivatives. The results show that the minimum error 
is obtained by using the Runge-Kutta second, third, and fourth order methods with 
step doubling method. It is important to note that there exists a straightforward 
technique for adaptive step size control in fourth-order Runge-Kutta, known as the 
step-doubling method (also referred to as the Local Error method). The method esti-
mates the error by taking two steps of half the size and comparing the results. The 
computational simplicity of the step-doubling technique is an advantage, but in prac-
tice, algorithms based on embedded Runge-Kutta formulas are found to be more effi-
cient. 
Keywords: Ordinary differential equation, Runge-Kutta method, error of approxima-
tion, first order differential equation. 
 

1. Introduction  

The first order ordinary differential equation 

( ) ( )0 0

dy
f x, y , y x y

dx
= =               --------- (1) 

There are numerous analytical methods available for solving these kinds of equations, but they are limited to solving a 

particular class of differential equations and their physical problems cannot be solved analytically. Thus, it becomes all im-

portant to take about their solution by numerical methods. When using numerical approaches, we obtain the numerical 
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values of the dependent variable for certain values of the independent variable rather than trying to find a relationship be-

tween the variables. It must be noted that even the differential equations which are solvable by analytical methods can be 

solved numerically as well. Separation of variables is a technique commonly used to solve ordinary differential equations. If  

(x) is a solution of 𝑐1(x), where 𝑐1 is an arbitrary (non-zero) constant, then it is considered as a linear differential equation and 

homogenous. 

It is often used to solve differential equation but is also used inside multivariable calculus when multiplying by an integrating 

factor allowing a non-exact differential to be made into an exact differential. The techniques take a long time and might not 

provide an exact answer and may contain a lot of errors. Thus, we need a method which gives us the solution as quick as 

possible with negligible error i.e. numerical method. Problems in which all the conditions are specified at the initial point 

only are called initial-value problems. For example, the problem given by equation (1) is an initial value problem. In order to 

derive a unique solution for an nth order ordinary differential equation, n values of the dependent variable and/or its deriva-

tive must be specified for independent variable. In numerical analysis, the Runge-Kutta methods are an important family of 

implicit and explicit iterative methods. These techniques were developed around 1895 by the German mathematicians Carl 

David Runge and Martin Wilhelm Kutta. C.D. Runge and M.W. Kutta developed explicit and implicit Runge-Kutta methods, 

and in 1895, first and second-order methods were developed. The Runge-Kutta technique of third order was created in 1901. 

In 1905, Martin Kutta introduced the fourth and fifth order methods. In 1964, Butcher introduced the sixth-order 

Runge-Kutta method, and the seventh and eighth-order methods were later introduced by Curtis in 1996. This method helps 

to minimize the error in the equation. 

2. BACKGROUND OF THE STUDY 

Many mathematicians had ordinary differential equations (ODEs) as a point of interest to develop and solve numerical 

solutions. With the development of digital computers, scientists and mathematicians encounter a lot of challenging issues 

while solving ODEs that cannot be solved analytically. This prompted a need of solving such problems numerically. The 

Runge-Kutta method is a widely used numerical method for solving ODEs. Using an equation including the derivative of the 

answer at that point, the Runge-Kutta method is an iterative technique that determines the approximate solution at a given 

point based on the solution at the previous point. The Runge- Kutta method is known for its simplicity and efficiency, and it is 

widely used in a variety of scientific and engineering applications. However, these techniques are used to make predictions 

by representing continuous variables as discrete values and using mathematical operations to find approximate solutions, 

which rely on precise mathematical formulas to solve problems. 

The adaptability of numerical approaches is one of their primary benefits. They can be used to solve a wide range of prob-

lems, including linear and nonlinear equations, differential equations, and optimization problems. Numerical methods also 

offer a dependable and effective solution to address complicated problems because they can be used on computers. 

 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Martin_Wilhelm_Kutta


 
N Gargav at.el 

 

 

ISSN (Online) : 2583-1372 3 
Journal of Applied Science and Education  

(JASE) 
A2Z Journals 

 

 

3. PROBLEM STATEMENT 

In research and engineering, mathematical issues are frequently solved using numerical techniques. While studying litera-

ture, we come across numerous works that apply Runge- Kutta methods of first, second, third, and fourth orders to solve 

initial value problems. Several authors have attempted to obtain good precision by using these methods. Runge-Kutta 

methods have been employed in research for several years, and researchers have investigated and developed lower and 

higher order Runge-Kutta methods in terms of accuracy, stability, and efficiency. Adaptive Runge-Kutta methods use em-

bedded integration formulas, which are pairs of Runge-Kutta formulas of different orders. The higher-order formula is used 

to estimate the error of the lower-order formula, and the step-size is adjusted accordingly. Step-doubling is a mechanism for 

adaptive step-size control in fourth-order Runge-Kutta method. A criterion for changing the step-size on the following step or 

rejecting the present step can be found by comparing the accuracy of the big step with the two tiny steps. 

The above background motivates our research to explore the computational techniques of Runge-Kutta methods, with a fo-

cus on the first-order method. In this project, we have considered two types of ordinary differential equations which are stiff 

and non-stiff. Our research will contribute to the development of numerical methods for solving initial value problems and 

provide insights into the importance of choosing an appropriate step-size. In the current work, we have proposed a tech-

nique of solving nonlinear ordinary differential equations using numerical methods. We provide a study on the numerical 

solutions of nonlinear ordinary differential equations using the popular adaptive Runge-Kutta-Fehlberg (RKF) method. 

4. LITERATURE REVIEW 

Maximum work has been done on Runge-Kutta method by different researchers since its inception (James, 2013). In mathe-

matical science, the Runge-Kutta method serves as a great tool in solving complicated ordinary differential equation and it 

was said that this method was established for the development of “differential equation” from Calculus, which itself was in-

dependently invented by English physicist Isaac Newton and German mathematician Gottfried Wilhelm Leibniz (Rajesh, 

2019). A numerical technique for solving ordinary differential equations (ODEs) is the Runge-Kutta method. It has become 

one of the most widely used methods for solving ODEs in engineering, physics, and other scientific fields. In Runge-Kutta 

method, the fundamental notion is to approximate an ODE's solution at discrete times. The method uses a Taylor series ex-

pansion to approximate the change in the solution over a small time-step and then use this approximation to estimate the 

solution at the next time-step (Press, et al., 2007). The process is repeated to produce a sequence of approximations that 

converge to the true solution of the ODE. There are several variations of the Runge-Kutta method, including the classical 

fourth-order Runge-Kutta method which is the most used version of the method. Other variants include the second-order 

Runge-Kutta method and the high order Runge-Kutta methods, which use more terms in the Taylor series expansion to 

achieve higher accuracy. The Runge-Kutta method has several advantages over other methods for solving ODEs (Deuflhard, 

2004), including its simplicity and ease of implementation, along with its ability to handle a wide range of ODEs, and the abil-

ity to preserve stability and accuracy even in the presence of large time-steps or nonlinearity. However, the method also has 

some limitations, including its sensitivity to the choice of time-step and its requirement for accurate initial conditions (Iserles, 
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2009). In recent years, there has been growing interest in using the Runge-Kutta method for solving ODEs in large-scale sci-

entific simulations, such as climate models and astrophysical simulations. The method has also been applied to the study of 

chaotic dynamics, where its ability to handle nonlinear ODEs and its ability to preserve stability and accuracy make it well 

suited to the study of complex, nonlinear systems (Stoer and Bulirsch, 2002). The first of these three methods is the 

mid-point rule adapted to ordinary differential equations, while the second and third methods are different versions of the 

Trapezoidal rule. The last of these methods suggests interactive computation of the stage values (Breen, 2018). The 

Runge-Kutta method extended the approximation method of earlier to a more elaborate scheme which was capable of 

greater accuracy. The plan was to apply an initial value problem's solution in a series of tiny increments. In each step, the rate 

of change of the solution is treated as constant and is found from the formula for the derivative evaluated at the beginning of 

the steps for the equation y′(x) = f (x, y(x)), with given initial value y(x0) = y0. The first step is from the initial x0 to a slightly 

larger value x1. The approximate solution at this point is taken to be:  

𝑦1 = 𝑦0 + (𝑥1 − 𝑥0) f (𝑥0, 𝑦0).  

In general, for a sequence of time values solution approximations 𝑦0,  𝑦1, 𝑦2…  are given by:  

𝑦𝑛 = 𝑦𝑛−1 + (𝑥𝑛 –  𝑥𝑛−1, 𝑦𝑛−1).  

Years after, more researchers had stood up to the course of Runge-Kutta method to make it better and more efficient. Some 

special Runge Kutta formula have been developed and implemented for boundary-value problems by Enright and Muir 

(1984–1986) (Shampine, 2000). Sharp (1987–1989) worked on the Runge-Kutta-Nystrom integrator for second order initial 

value problems, whereas Chan and Jackson (1986) used iterative linear equation solvers in coding for huge systems of stiff 

initial value problems and he analysed new low explicit Runge-Kutta pairs respectively. Investigations related to the assess-

ment and comparison of numerical method have continued. Enright (1989-1991) analysed error control strategies (Ababneh 

2009). 

5. METHODOLOGY 

A first-order Runge-Kutta method (RK1) is used for solving a first order differential equation (initial value problem) (Arqub, 

2014). In this method, each successive value(s) yn+1 is obtained from information from the immediate proceeding value(s) yn 

(Abbasbandy, 2002). There are many different numerical methods for solving first-order differential equations which are as 

below: 

• Euler's method 

• Runge-Kutta methods 

• Adams-Bashforth methods 

• Adams-Moulton methods 

The choice of which method to use depends on the specific equation being solved, as well as the desired accuracy and stabil-

ity of the solution. The numerical methods that mentioned, such as Runge-Kutta method, are very effective for solving 

first-order differential equations. They can achieve high accuracy with relatively few steps, and they are also relatively stable. 
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Therefore, they are often the preferred choice for solving first-order differential equations. 

Let it be required to find an approximation solution of the differential equation: 

( )dy dx y f x, y= =  ----------- (2)  

satisfying the initial condition y (𝑥0) = 𝑦0 

This problem is called the Cauchy problem. Numerical solution of the Cauchy problem consists in calculating approximate 

values of 𝑥1, 𝑥2, 𝑥3………. 𝑥𝑛 and the corresponding values of 𝑦1, 𝑦2, 𝑦3 ………. 𝑦𝑛. 

Generally, 𝑥𝑖 = 𝑥0+ i h where i = 1, 2, 3…. n.                                         (3) 

The points 𝑥𝑖 are called grid nodes and h is the grid step, and 0 < h< 1. 

Among the numerical methods for solving ordinary differential equation the most famous are the methods of Euler and of 

Runge-Kutta. These methods belong to the group of one step methods in which to calculate the point information is required 

only about the last calculated point 𝑌𝑖. The Runge-Kutta methods are an important family of predictor corrector methods for 

approximation of solutions of ODEs. Let us consider an initial value problem (IVP) 𝑢'(𝑡) = 𝑓 (𝑡, 𝑢(𝑡)) where (𝑢1(𝑡), 𝑢2(𝑡) …. 

𝑢𝑛(𝑡)) 𝑇, f ∈ [𝑎, 𝑏] × 𝑅𝑛 → 𝑅𝑛 to solve numerically approximate the continuously differentiable equations of the IVP. Over the 

time interval, we subdivide the interval into equal sub intervals and select the mesh points 

𝑡𝑗 = 𝑎 + jh, j = 0, 1, ……...N and h = (b – a)/N where h is called step-size. 

The family of explicit Runge-Kutta (RK) methods of the mth stage is given by: 

1 1

1

m

n n n i i

i

t u u c k+ +

=

= = +     ----------- (4)  

𝑘1 = (𝑡𝑛, 𝑢𝑛) 

𝑘2 = (𝑡𝑛+𝛼2ℎ𝑢𝑛 + ℎ𝛽21𝑘1(𝑡𝑛, 𝑢𝑛) 

𝑘3 = (𝑡𝑛+𝛼3ℎ𝑢𝑛 + ℎ {𝛽31𝑘1(𝑡𝑛, 𝑢𝑛) + 𝛽32𝑘2(𝑡𝑛, 𝑢𝑛)} 

and, in general 𝑘𝑚 = 𝑓(𝑡𝑛 + 𝛼𝑚ℎ + 𝑢𝑛 +  ℎ ∑ 𝛽𝑚𝑗𝑘𝑗)
𝑚−1

𝑖=1
   

Since the exact solution of the Cauchy problem is often unknown, the Runge’s rule or the double recalculation rule is used to  

estimate the error from the method: the calculation is repeated with a step h/2 and the absolute difference is calculated: 

2

2 1

h h

n n

p

u u−

−
 where

h

nu is the value of the function at the point 𝑡 and step h and 
2h

nu is the value of the function at the 

point nu  and step h/2. p is the order of the method (the RK4 method is a fourth order method) meaning that the error per 

step is of the order of ℎ5 while the total accumulated error has order ℎ4. 

The error of the method is estimated using the following formula: 

max 

2

2 1

h h

n n

p

u u−

−
 for i = 0,1,2……… 
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6. Description of the Method 

The adaptive step-size control algorithm proceeds in the following manner: in each method we must find the value of u at the 

step-size h, then calculate at the step-size h/2. 

  

The error estimation is max:    

Next, at each step two attained approximation are compared, difference between these approximations gives the per step error 

𝜀. The numerical results are presented by depicting two numerical solution profiles (by Runge-Kutta method and Runge’s rule) 

along with the profile of exact solution. The comparative error estimate for two numerical solutions have also been presented. 

Additionally, we have presented the progression of both numerical solution and the absolute error. 

7. RESULT AND DISCUSSION 

Here, we demonstrated the efficiency of first order Runge-Kutta (RK1) method in solving the given differential equation. This 

ODE is solved with three different step-sizes. The solutions thus obtained are compared with the exact solution of the equation 

to ascertain the level of accuracy regarding each step-size.  

To obtain the approximate value of the solution (y) for the initial value problem, we first solve the given equation for the exact 

equation. 

𝑢' = 0.2 u + t         ------------ (5) 

u (0) = 1 [0, 0.2] in 0.1 increments 

the equation is:  𝑢' – 0.2 𝑢 = t 

I.F. = 𝑒∫ 𝑝 𝑑𝑡 

On comparing the above equation with we get P = – 0.2 and Q = t 

 I.F.  = 𝑒− ∫0.2𝑑𝑡 = 𝑒−0.2 𝑡 

The solution of the linear equation is 

𝑢 𝑒− ∫0.2𝑑𝑡 = c + ∫ 𝑡. 𝑒−0.2𝑡dt 

𝑢 𝑒− ∫0.2𝑑𝑡 = c + 5(5 – t) 𝑒−0.2 𝑡 

𝑢 = c 𝑒0.2𝑡 + 5(5 – t)  

Now, to find the value of c, we use u (0) = 1 in 𝑢 = c 𝑒0.2𝑡 + 5(5 – t) and get, c = ̶ 24. 

 𝑢 = ̶ 24𝑒0.2𝑡 + 5(5 – t) 

The exact solution for this problem is 𝑢 = – 24𝑒0.2𝑡 + 5(5 – t), and we are interested in the value of u for 0 ≤ t ≤ 0.2. 

We first solve the problem using the second order Runge-Kutta method with h = 0.1 and from t = 0 to t = 0.2, with step size h = 

0.1. It takes 2 steps: 𝑡0 = 0, 𝑡1 = 0.1, 𝑡2 = 0.2 

Step 0: 𝑡0 = 0 𝑢0 = 1. 

Step 1: 𝑡1 = 0.1 𝑢1 = 1.106 

Step 2: 𝑡2= 0.2 𝑢2 = 1.22523 

Now let’s compare what we got with the exact solution. 
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Consider the numerical solution of the Cauchy problem 

𝑢' = 0.2 u + t, u (0) = 1 [0, 0.2] in 0.1 increments 

To solve this problem, we use the second order Runge-Kutta method. The estimation of errors the method will be carried out 

based on the Runge’s rule. 

Table 1: The comparison of second order Runge-Kutta method and Runge’s rule. 

 

 

 

 

 

 

 

 

 Fig 1(a) Behaviour of the exact and numerical solution        Fig. 1(b) Absolute error for the second order 

 

 

The figure 1(a) depicts the behaviour of the exact and numerical solution of eq (5) and figure 1(b) shows the absolute error for 

the second order Runge-Kutta method and Runge’s rule between numerical solutions and the exact solution.  

The maximum absolute error by RK2 method is 0.03045 and 0.078967 by Runge’s rule.  

 

 

 

 

Step Size 0.00 0.05 0.1 0.15 0.2 

Value by RK2 Method 1.0000  1.106  1.22523 

Value by Runge’s Rule 1.0000 1.05375 1.11077 1.17121 1.176713 

Exact Value 1.0000 1.051525 1.116205 1.18420 1.25568 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

0.09 

0.08 

0.07 

0.06 

0.05 

0.04 
RK2 Error 

Runge’s Error 

0.03 

0.02 

0.01 

0 

0 0.1 0.2 



 
N Gargav at.el 

 

 

ISSN (Online) : 2583-1372 8 
Journal of Applied Science and Education  

(JASE) 
A2Z Journals 

 

 

Table 2: Comparison for number of steps between third order Runge-Kutta method and Runge’s rule. 

Step Size 0.00 0.05 0.1 0.15 0.2 

Value by RK3 Method 1.0000  1.1062  1.225134 

Value by Runge’s Rule 1.0000 1.053125 1.162845 1.225596 1.2694800 

Exact Value 1.0000 1.051525 1.116205 1.18420 1.25568 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2(a) Behaviour of the exact and numerical solution         Fig 2(b) The absolute error for the fourth order 
 
The figure 2(a) depicts the behaviour of the exact and numerical solution of eq (5) and figure 2(b) shows the absolute error for 
the fourth order Runge-Kutta method and Runge’s rule between numerical solutions and the exact solution.  
The maximum absolute error by third order Runge-Kutta method is 0.03045 and 0.078967 by Runge’s rule. 
 

Table 3: Comparison for number of steps between fourth order Runge-Kutta method and Runge’s rule. 
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Value by RK4 method 1.0000  1.1062  1.225134 
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     Fig 3(a) Behaviour of the exact and numerical solution          Fig 3 (b) Absolute error for the fourth order 
 
The figure 3(a) depicts the behaviour of the exact and numerical solution of eq (5) and figure 3(b) shows the absolute error for 
the fourth order Runge-Kutta method and Runge’s rule between numerical solutions and the exact solution.  
The maximum absolute error by fourth order Runge-Kutta method is 0.000462 and 0.02892 by Runge’s rule. 
 
 
Comparison of Errors in Solving ODEs Using Runge-Kutta Method and Runge’s Rule 
From the pie chart and the adjacent table, the fourth order Runge-Kutta Method provides the highest accuracy 
 

 
 
               Fig 4 Comparison of Errors in Solving ODEs Using Runge-Kutta Method and Runge’s Rule 
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