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  Abstract 

With the growing role and application of mathematics in almost every field it is no 
doubt that it plays an experimental and crucial role in an advancing field of neurosci-
ence which is still under constant research. The aim of the report is two fundamental 
points: to show how mathematical models that enlighten a few pieces of neuroscience 
can be built, principally by depicting both "exemplary" and recent models; what's more, 
to make sense of mathematical techniques by which these models can be investigated, 
in this way yielding pre-expressions and clarifications that can be applied as a powerful 
influence for experimental information. To show how somewhat straightforward math-
ematical models and their investigations can help comprehension of certain areas and 
activity of brain and central nervous systems. In computational neuroscience a model 
is recorded which is an estimate of the connection between a bunch of information; 
however, there is no formal intelligent way to "demonstrate" the model right or wrong. 
So mathematical recreations are done. The role of mathematics in neuroscience has 
been elaborated and discussed. 
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1. Introduction  

Neuroscience is a review given to getting the sensory system and its central part, the brain. This examination can happen at 

various levels, from sub-atomic synapses and cell organizations to discernment and conduct. Along these lines, techniques for 

request and exploration are drawn from various disciplines, including sub-atomic and cell science, physiology, biomedicine, 

social science, mental brain research, electrical designing, software engineering and man-made intelligence. Understanding 

the brain as a framework will require the utilization of mathematics. Neuroscience needs suitable hypothesis that is tentatively 

manageable, as it tends to be educated by information, can replicate information, and can make non-unimportant testable 

expectations. 

  Understanding emergent complex elements and peculiarities expects mathematics to give a general language that can put 

Open Access

mailto:trishasrivastava1412@gmail.com
mailto:akpandey@lko.amity.edu
https://doi.org/10.54060/jase.v3i2.16
https://doi.org/10.54060/jase.v3i2.16
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


T. Srivastava, A. K. Pandey 

 

 

ISSN (Online) : 2583-1372 2 
Journal of Applied Science and Education  

(JASE) 
A2Z Journals 

 

 

together thoughts and give a construction that supports drawing intelligent causal deductions between associating parts.  

For what reason is mathematics basic to the study of neuroscience? Similarly, as with any intricate framework, our subjective 

thinking capacities are restricted, as in we can join or broaden a legitimately associated line of reasoning a limited number of 

steps 'into what's to come'.  

  Mathematics gives a conventional construction of intelligent standards that we can use to keep a logic in a sensibly steady 

way towards some decision in a manner that acclimatizes theoretical standards and subtleties (for example information) re-

gardless of whether we can't quickly monitor every one of the intelligent connections between the subtleties. For a special 

framework, for example, the brain we won't comprehend it as a framework by considering the subtleties of each protein or 

particle divert in turn. While there is a proceeding with blast of information in neuroscience and a great deal of illustrative 

quantitative examination and demonstrating, there are restricted hypothetical systems and constructions that give profound 

experiences into how the brain functions. 

  Mathematical neuroscience in any case called theoretical neuroscience or computational neuroscience is a piece of neuro-

science which uses numerical models, speculative examination and impressions of the mind to understand the principles that 

oversee the development, plan, physiology and intellectual abilities of the sensory system Computational neuroscience uses 

computational multiplications to endorse and settle numerical models, hence ought to be noticeable as a sub-field of specula-

tive neuroscience; regardless, the two fields are consistently compatible. The term numerical neuroscience is in like manner 

used to a great extent, to extend the quantitative thought of the field. 

  Computational neuroscience centers around the portrayal of normally possible neurons (and brain systems) and their phys-

iology and elements, and it is thusly not straightforwardly worried about organically irrational models utilized in connectionism, 

control hypothesis, computer science, quantitative brain science, AI, fake brain organizations, man-made consciousness and 

computational learning hypothesis albeit shared motivation exists and some of the time there is no severe cut-off between 

fields, with model reflection in computational neuroscience relying upon research scope and the granularity at which organic 

substances are examined.  

  Models in theoretical neuroscience are highlighted getting the essential features of the normal framework at various spatial-

common scales, from film streams, and compound coupling through network movements, columnar and geographical plan, 

centers, beyond what many would consider possible up to mental assets like memory, learning and lead. These computational 

models frame speculations that can be clearly attempted by normal or mental examinations.  

  A lot of neurosciences can be modelled utilizing differential equations, from gating stations to single neurons to an organi-

zation of neurons to blood stream, to conduct. A straightforward method for contemplating differential equations is they are 

equations that depict how something changes. Differential Equations are mathematical equations that portray how something 

like populace, or a neuron change after some time. The justification for why differential equations is so valuable is they can 

sum up an interaction to such an extent that one condition can be utilized to depict a wide range of results. Linear algebra is 

similarly significant for neuroscience all things considered for whatever other logical field that utilizes math. Despite the fact 

that neurons and brain circuits have complex, non-linear ways of behaving, we want the devices of linear algebra to portray 

that way of behaving. 

  To understand the brain there are mathematical tools that are used and there are several approaches to study the brain for 

instance nowadays the labs are producing a lot of data therefore all these tools from data analysis, statistics and information 

theory are going to be useful to understand the data that are produced in the labs and to extract patterns from them. Also, the 

neurons are connected into many connections and this structure can be studied as a graph theory or topology and also using 

dynamics systems. 
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2. A Historical Sketch of Nerves and their Mathematics 

During the nineteenth century, it was observed that electrical development in a nerve normally influences abutting neurons. 

Camillo Golgi and Santiago Ramon y Cajal made the principle organized portrayals of nerve cells in the late nineteenth century, 

and one of Cajal's drawings is repeated beneath. 

 

Figure 1. Structure of nerves 

 

  All through the latest century neuroscience has now formed into a wide and different field. Sub-atomic neuroscience focuses 

on the organized development and components of neurons, neurotransmitters and little associations; systems neuroscience 

concentrates for greater extension networks that perform tasks and partner with other such associations (or frontal cortex 

areas) to shape pathways for more huge level limits; and mental neuroscience focuses on the association between the funda-

mental physiology (neural substrates) and direct, thought and comprehension. Numerical treatment of the sensory system 

began during the 20th century. One of the primary models is the book of Norbert Wiener, considering work wrapped up with 

the Mexican physiologist Arturo Rosenblueth, and at first dispersed in 1948. Weiner introduced considerations from dissipative 

dynamical frameworks, balance social events, quantifiable mechanics, time series assessment, information speculation and 

analysis control. He also discussed the association between cutting edge PCs (then, in their beginning phases) and neural cir-

cuits, a theme that John von Neumann thus tended to in a book written in 1955-57 and circulated in the year after his demise. 

The main cell level numerical model of a singular neuron was made during the 1950's by the British physiologists Alan Hodgkin 

and Andrew Huxley. They were awarded the Nobel Prize of Physiology for this work in 1963. 

  Despite the fact that interest in principle and modelling is developing, neuroscience is as yet overwhelmed by test techniques 

and discoveries. Most models are created to make sense of and additionally to anticipate trial perceptions. To do so they should 

be approved by reproducing, subjectively, conduct noticed tentatively. Models can be of two expansive types: experimental 

(likewise called spellbinding or phenological), or robotic. Observational models overlook the (maybe obscure) life structures 

and physiology, and endeavor to replicate input-result (or upgrade reaction) connections of the natural system under review.  

  Many models are not all that effectively classifiable, and models can likewise possess a wide range of spots in a continuum 

from molecular to organismal scales. Most models in neuroscience and numerical biology take a stab at quantitative exactness, 

yet this stays subtler than is normally in the actual sciences. 
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3. Mathematical Representation of Neural Networks 

Neural networks as Nonlinear ODEs: Here are presented abstracted examples of neural networks and their realizations as sys-

tems of ODEs. These connectionists or firing rate models overlook the subtleties of spike dynamics and synaptic transmission, 

supplanting the fine scale fleeting dynamics of transmembrane voltages by factors portraying the actuations or firing rates of 

cells or gatherings of cells. They are extensively more straightforward and more manageable than the Hodgkin-Huxley condi-

tions. Inhibitory associations bring down a postsynaptic neuron's enactment in light of presynaptic movement; this is achieved 

in ODEs by regrettable coefficients duplicating the presynaptic activation terms in the postsynaptic condition. Also, positive co-

efficients address excitatory associations. Stimuli beginning in tangible neurons can along these lines either increment or decline 

firing rates relying upon the neuronal reaction properties, however the impacts are regularly nonlinear. 

  In firing rate models, postsynaptic neural reactions to inputs from different cells, and to stimuli, are portrayed by straightfor-

ward input/output capacities or current-to-recurrence transduction bends. It is limited: they can't dip under nothing, and they 

can't surpass a most extreme recurrence, constrained by the stubborn period, and relying upon the cell type to Fire rates. Hence, 

low level stimuli commonly make little difference, while the reaction saturates at high improvement levels. Between these limits 

the cell is maximally receptive to changes in stimuli. This instinctively legitimizes the utilization of sigmoid-like input/output 

capacities. Such capacities can be obtained from spiking neuron models by mean field and kinetic theory strategies. The scales 

and sizes of the "compressive impact" change from one framework to another, so a few practical portrayals have been created. 

Additionally, the sigmoid equation of the Naka-Rushton work portrays the reaction S(P) to an upgrade of solidarity P by means 

of three boundaries. 

 

 

 

 

 

 

 

  Here S(P)      M, is the maximal response( spike rate) for a condition of strong stimuli. The boundary σ sets the improve-

ment strength at which S(P) arrives at M/2 and N controls the steepness with which the ascent from 0 to M happens. In the 

sigmoid condition the boundaries g (gain) and β (predisposition or offset) assume comparable parts to N and σ in the S(P) con-

dition the most extreme worth was standardized to 1 in sigmoid condition. The accompanying ODEs portray a basic two neuron 

network with the winner taking it all property. This property signifies that both the neural networks equally inhibit each other 

together whilst at the same time they also activate each other through the reflexive connections.  

 

 

 

 

 

 

  Here E1 addresses the spike rate of neuron 1, which gets outside input K1, and is hindered by neuron 2, and E2 addresses the 

spike rate of neuron 2, which neuron 1 represses. In spite of the fact that we say "neuron 1 and neuron 2," every one of these 

numerical factors might address the normal action over a populace of cells of a similar kind, or a subgroup tuned to a specific 

stimulus. 
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Figure 2. of a simple winner takes it all neural network 

 

  Neurons or gatherings of neurons are addressed as circles, and outside inputs and neurotransmitters to different neurons as 

interfacing lines or curves. Excitatory associations (positive inputs) end with a bolt and inhibitory associations (negative inputs) 

with a filled circle. Self-inhibitory associations are at times excluded in such portrayals. The self-excitatory associations are miss-

ing in these equations. 

  For appropriate parameter values has two sinks whose areas of fascination are isolated by the steady complex of a seat point. 

Specifically, for M = 100, σ = 120, N = 2 and K1 = K2 = 120, they lie at (0, 50) and (50, 0) This is the substance of the champ bring 

home all the glory. If neuron 1, say, has a higher terminating rate, either from the underlying circumstances or because of a more 

grounded input, its output drives down that of neuron 2, consequently diminishing inhibitory criticism to 1 and permitting 1's 

rate to increment further. 

  Assuming that the arrangement goes to harmony with neuron 1 non-zero, then the framework "picks" elective 1. In the event 

that it goes to harmony with neuron 1 headed to nothing, it picks 2. Note that the choice is resolved both by the inputs (proof 

for every decision) and by beginning circumstances (e.g., inclination towards one other option). Inclinations that set the frame-

work near harmony can require solid proof to converge on the right choice. Additionally, assuming inputs are changed after the 

framework settles on a choice, settling on a similar decision in the following trial is logical. 

 

The Hodgkin-Huxley Model 

The Hodgkin-Huxley model, is a mathematical model that depicts how movement prospects in neurons are begun and spread. 

A lot of nonlinear differential conditions approximates the electrical traits of restless cells like neurons and cardiovascular myo-

cytes. It is a relentless time dynamical system. Alan Hodgkin and Andrew Huxley portrayed the model in 1952 to sort out the 

ionic instruments stowed away the initiation and causing of action prospects in the squid goliath axon. They got the 1963 Nobel 

Prize in Physiology or Medicine for this work. 
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Figure 3. Giant Squid  

 

  Hodgkin and Huxley wanted to study the action potentials in nerve cells but didn’t have equipment like an electrode small 

enough to study it in mammals and smaller organisms, so they looked at the giant squid whose axon connecting neurons in the 

brain down to its tail or base is quite enormous several centimeters and in diameter. So, the electrodes in 1952 when Hodgkin 

and Huxley developed this model were sufficient in size to precisely record action potentials and voltages across the axons. This 

model was developed and refined and tested before the use of computers and hence there are fairly involved differential equa-

tions. This model is a highly used model for the action potential. 

 

Mathematical properties and working: 

We start with an electric circuit model where the cell membrane or the axon membrane is modelled as a capacitor separating 

charge on either side of the membrane ionic charge and the ion channels are modelled as conductance or resistors and the 

Nernst potential which the ability of the ions to move back and forth is modelled as a battery. So, we have a model for basic for 

basic squid axon and most neurons. We have sodium and potassium and leak current where the leak current is the current 

through all the gates which are always open. The sodium and potassium gates are voltage rated gates or membrane potential 

gate and they change their conductivity with the membrane potential. But the leak gates are always open so what goes through 

those gates through leakage would include so sodium and potassium but also all the other ions so its everything that isn’t in-

volved in the voltage gated. The capacitors and the three Nerst potentials acting as the driving forces to move the sodium and 

potassium and leak currents through the membrane. 

 

Quantitatively out total current would be 

 

ITOT = IK + INa + IL and each of these could be written as a function of membrane potential and time and is equal to the difference 

between the Nerst potential and the membrane potential as 

INa (V,t) = (VNa -V)gNa (V,t) 



 T. Srivastava, A. K. Pandey 
 

 

ISSN (Online) : 2583-1372 7 
Journal of Applied Science and Education  

(JASE) 
A2Z Journals 

 

 

 because if the nerst potential is equal to the membrane potential then no current of the ion will flow. We have similar expres-

sions for potassium and leak current 

IK (V, t) = (VK – V)gK (V,t) 

IL (V,t) = (VL – V)gL  

The conductance in the mathematical model takes the form of maximum times into a fraction f of channels open, therefore  

g = gMAX * f(V,t) 

so for instance, if all the sodium channels are open in that case f = 1 and there will be maximum conductance for sodium on the 

other hand if none of the channels are open and we have zero conductance so f will be between 0 and 1 . 

Figure 4. Hodgkin-Huxley circuit model 

The total current can be written in the form of the differential equation  

ITOT = dQ/dt=C dV/dt which can be now written as sum of the remaining currents as 

ITOT = C dV/dt = (VK -V)gK (V,t) + (VNa -V)gNa (V,t)+ (VL -V)gL 

Key concept: The key concept is called the gating variable, the gates of sodium and potassium can open and close depending on 

the membrane potential and time . Here f will be the fraction of open channels and is the gating variable. And if a channel is 

either open or closed if then if a fraction f is open then 1-f will be closed channels and for this process, we have the differential 

equation 

df/dt= α_(f )(1-f) – βf f ,                   where f = gating variable 

α= rate at which close channel open  

β= rate at which open channels close 

Note: The f gating variable will be called n,m and h for the three types of gating; K activation, Na activation, and Na inactivation 

Now the differential equation for potassium activation is  

dn/dt= αn(V)(1-n) – βn(V)n 

For sodium activation 

dm/dt= αm(V)(1-m) – βm(V)m 

For sodium inactivation 

dh/dt= αh(V)(1-h) – βh(V)h 

  The three α and β functions are chosen so that the channel gates are open at the observed membrane potentials and with 

the appropriate speed for a particular type of neuron. This completes the Hodgkin-Huxley (H-H) model. 

The Hodgkin-Huxley model can be considered a differential condition framework with four state factors, that change regarding 

time t. The framework is challenging to study since it is a nonlinear framework and can't be tackled logically. In any case, there 

are numerous mathematical techniques accessible to investigate the framework. Certain properties and general ways of behav-

ing, for example, limit cycles, can be demonstrated to exist. 
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4. Mathematic Modelling of Neuroscience 

There are many ways to deal with the mathematical modeling of biological peculiarities, each with various benefits and uses. 

This course investigates a few of these roads. The first and generally clear quality of a model is the level or scale at which it 

works. While there is extensive interest in networks of people occupied with aggregate navigation (in neuro-financial matters, 

for instance), neurobiological models typically start at the degree of people, with full sensory system models, which distinguish 

the significant nerves interfacing parts of the body and different organs to the central nervous system. A higher degree of detail 

centers around the brain, modelling connections among districts or brain regions inside it. Proceeding to more limited sizes, we 

progress to models of a few neurons, so, all in all, spike rates, layer voltages, and periods of individual cells are of premium. 

However, even these models don't address the physical or on the other hand physiological detail of single cells. At a higher 

degree of detail, where the Hodgkin-Huxley model dwells, the neuron is Here ionic flows and film possibilities describe the 

model, however, in spite of the fact that it is undeniably more explained than those at the bigger scope, it is as yet loose and 

rough in numerous ways. 

  At some random degree of detail, there are a few kinds of models that can be created. Robotic models intend to precisely 

catch the hidden physiology, and along these lines create forecasts about the physiological way of behaving which can be distin-

guished tentatively. Models of this kind, while apparently awesome, are regularly 1) confounded (nonlinear and high-dimen-

sional), thereby restricting helpful examination, 2) broad, restricting enormous scope re-enactment of connected models, 3) 

portrayed by numerous boundaries which are hard to quantify or gauge, and 4) along these lines interesting by and by. Different 

models improve on the physiology, regularly just focussing on one component; they thusly have decreased dimensionality con-

trasted with more complete models, and are in this way frequently less valuable for forecast and clarification. At long last, at the 

most distant finish of the range, are observational or phenomenological models that endeavor to fit exploratory information, 

without reference to fundamental physiology. Run of the mill models seldom fall neatly into one of these three classes; they 

occupy a continuum, with generally someplace close to the center. 

  The Hodgkin-Huxley (H-H) model is excellent in a few perspectives. It is a cellular-level model which was laid out via cautious 

physiological analyses (in spite of the fact that it is rough when seen from the sub-atomic scale). It and its adjustments and 

augmentations have effectively depicted a wide assortment of perceptions. For example, years after their improvement in the 

mid-1950s, it was seen that the H-H conditions anticipated a peculiarity known as hysteresis, which had never been seen tenta-

tively. In 1980 hysteresis was checked in examinations by Guttman, Lewis, and Rinzel. Other models that we will find in this part 

are disentanglements of H-H, which hold physiological motivation yet are less exact, not so much point by point but rather more 

amiable to investigate. The second, the FitzHugh-Nagumo (F-N) model, originates before Rinzel's and was not straightforwardly 

roused by physiology, however by inspecting H-H arrangements 

  Furthermore, making a more manageable two-layered ODE with comparative elements. While not straightforwardly model-

ling physiology, it is still exceptionally valuable, since it distinguishes key subjective properties that produce the noticed activity 

potential (AP) or spike and the recalcitrant way of behaving that follows it: properties that other more detailed models share. 

 

McCulloch Pitts (MCP)Neuron Model: First Neuron Mathematical Model 

• First mathematical model of a biological neuron. 

• It is also called the Linear Threshold Gate model 

• Basic building block of neural network. 

• Directed weight graph is used for connecting neurons. 

• It was developed in 1943 by Warren McCulloch and Walter Pitts. 

• Two possible states of neurons occur: if active then represented by 1 and if silent then represented by 0. 
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Mathematical model was as follows: 

We had a function f and a function Σ which give the output.  

x1,x2…..xn are the inputs. And since we take a weighted graph so when x1 is connected to a function it will have a weight, for 

instance, w1………..wn .And the weighted sum is the combined input in the function f.  

Here Σ aggregates the weighted input into a single numeric value. Hence the weighted input will be  

Σx1w1 + x2 w2 +  ………+ xn wn = X (Let) 

The role of f is to produce the output of this neuron. 

x1 

x2 

. 

. 

xn  

Figure 5. Mathematical representation of McCulloh Pitts(MCP) Neuron model 

To produce the output we use a threshold value(T). Where the threshold is the minimum value of weighted active input for a 

neuron to fire. 

Then Output = 1 if X > T 

                         0 if X < T 

If weighted input is larger then threshold (T) then output is 1 else output is 0. 

We can give output a function as F(a) = Σ wi xi – T 

This completes the MCP neuron model. 

Synaptic connections and small networks 

  We currently move from single cell models to thinking about networks, beginning with a survey of models for synthetic neu-

rotransmitters, in which neurons impart through delivery and gathering of synapse molecules junctions, and of direct electrical 

associations or gap junctions. 

Synapses and gap junctions: 

  Synapses are structures in neurons that permit correspondence of signs with different neurons. Neurons except those that 

are present at electrical synapses are separated from each other by a distance of 20-30 nm. This space that separates neurons 

from each other is called synaptic cleft. There are in excess of 1011 neurons in the human brain, and on normal 1000 synaptic 

associations from every neuron. Two cells at electrical synapses are connected through gap junctions. 

  Electrical synapses are those synapses in which action potential (electric current) flows directly from one cell to another cell. 

Substance synapses include the arrival of synapse from a presynaptic neuron and its gathering at another, postsynaptic neuron, 

bringing about the age of excitatory or inhibitory postsynaptic possibilities (EPSPs or IPSPs). A solitary EPSP is normally too little 

to even think about driving a hyperpolarized neuron above limit, yet numerous EPSPs cause the postsynaptic cell to spike. 

  Electrical synapses give quick, bidirectional correspondence, due to the electrotonic transmission. The change in postsynaptic 

potential relies straightforwardly upon the size and state of the change in presynaptic potential, as well as on the compelling 

Output 
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information obstruction of the postsynaptic region. A little postsynaptic neuron or expansion will have a high information oppo-

sition and answer all the more emphatically to a little current through the channel. As a general rule, electrical synapses are 

depolarizing (excitatory) through the transmission of the expanded possibilities relating to spikes, however, activity possibilities 

with hyperpolarizing after-potential make inhibitory hyperpolarization. Bidirectionality results from the cytoplasmic progression, 

in spite of the fact that there are special cases: certain diverts can likewise shut-in reaction to voltage changes, allowing trans-

mission of spikes in just a single bearing; these are called rectifying synapses. 

Modelling 

Gap junctions are normally modelled as straightforward resistors, passing a current corresponding to the voltage contrast be-

tween the cells in touch. Henceforth for the current passing from the ith to the jth cell, one adds to the inner ionic currents a 

term Igap = +ḡgap (vi – ji ) where ḡgap addresses the conductance of the intersection and (vi − vj ) is the possible contrast 

between cell I and cell j. For a couple of H-H type model cells, this prompt: 

C1v ̇1 = - I 1,ion (…) + I 1,ext + ḡgap  ( v2 – v1 ) ,  

C2v ̇2 = - I 2,ion (…) + I 2,ext + ḡgap  ( v1 – v2 ) 

(Additionally, equations for the gating factors of every cell). Note that the gap intersection current term is customarily displayed 

as + Igap . 

5. Understanding the Brain as Maths 

Our Brain as Math. Our brain is physically three-dimensional, but describing its complicated web of connections might require 

that we study the mathematics of structures in 11 dimensions. Algebraic topology can help us decode the connections among 

neurons in our brains to help us understand their function. If we were to watch a brain to think, we would see a beautiful mess 

of activity, with neurons firing all over the place. This wild world must have some order. But coming up with a precise and 

quantitative description of that order, of how the brain is processing information, is extremely difficult.  

  Applied mathematics is often about finding the correct framework, an assort of essential structures, for a problem and ig-

noring the details. So how does a mathematician view a brain? Basically, as a graph in the sense of a collection of vertices, or 

nodes, connected by edges. The graph will represent the connections among neurons, and the activity of the brain, over a little 

time slice. Each neuron is a vertex. If during our little time slice, there is an active connection between two neurons, connect 

their representative vertices by an edge. That’s the neural network. 

  There’s a big question in neuroscience about how to analyze the structure of a neural network. Let’s say one is moving is 

thumb during that time slice. How can we read or interpret that action, which is the functional outcome of our neural network 

from its structure? It looks like mess of vertices and edges. Well to approach this problem the first thing we need is a neural 

network to study, an actual brain, or at least a model of one. This is where the Blue Brain Project enters the picture, led by 

neuroscientist Henry Markram. The goal of the Blue Brain project is to create a digital reconstruction and simulation of the 

brain. Using a complicated algorithm that accounts for decades of neuroscience research and then testing it against real brain.  

The project aim quoted “digital reconstruction of rat neocortical micro circuitry that closely resembled the biological tissue in 

terms of numbers, types and densities of neurons and their synaptic connectivity.” This digital brain has roughly 31,000 neu-

rons, or vertices in case of graph model and 8 million connections or edges.  

  As in applied mathematics, we will work with the data given. The neuroscientific problem is to construct a graph showing 

connections between neurons and the mathematical problem is to analyse the data from that graph. Our challenge in mathe-

matics is that we have a bunch of huge graphs, each of which represents the connections between neurons within a given time 

slice. 

Extracting useful information   

A lot of the analysis of graphs or networks suffers from a local versus global problem. The tools of algebraic topology are 

uniquely equipped to provide quantitative information about both local and global properties of a graph. These graphs are 
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interpreted as Directed Simplicial Complexes. And that framework has been fruitful revealing high-dimensional structures that 

were previously hidden.  

  Simplicial complexes, the object we are interested in studying, are built from simplicles, plural of simplex.  A simplex is a 

generalized triangle. A 0-simplex is a single vertex. A 1 – simplex is two vertices connected by an edge.  A 2 – simplex is three 

vertices connected pairwise by edges with a single face, in other words, a triangle. A 3- simplex is 4 vertices connected pairwise 

by edges joined by four faces, which are filled in to form a solid, a tetrahedron. Generalizing that pattern for any  

Figure 6. of a complete graph 

number k, k simplex which is k- dimensional, is formed using k+1 vertices. The k simplex is made up of those vertices and all 

the space in between them what is known as the convex hull. 

  We can interpret complete graphs as simplices. The complete graph shows all the nodes and edges. Then in fill those in with 

2-dimensional triangular faces,3-dimensional solids, 4 -dimensional spaces and so on. The complete graph on k vertices will 

form (k-1) – simplex.  A simplicial complex is basically just a bunch of simplices, possibly of different dimensions, considered 

as one collective unit. 

  Betti numbers are a sequence of numbers which indicate how many holes of each dimension an object has. Our brain is 

eight- dimensional. Our brain can be modelled into a simplicial complex and algebraic topology can tell us the Betti numbers 

of that simplicial complex. This might bring us close to understand the structure of neural connections and their functions. 

  But we can add one additional layer of information to this neural network- the direction of information flow. There is an 

inherent asymmetry in the way one neuron communicates with another. The electrical current passes from the presynaptic 

neuron to postsynaptic neuron. We can encode that by adding an arrow, indicating the direction of synaptic transmission on 

each edge of the graph. This is called a directed graph. 

  If we consider information as flowing through the brain from neuron to neuron with a specific orientation, we are most 

interested in highlighting the graph structures associated with that directed flow. Let’s say you have 4 neurons, all of which 

communicate with each other. We model them as a complete directed graph. In this case there is one neuron from which all 

the arrows are pointing out and one neuron towards which all the arrows are pointing. We call these the source and the sink 

respectively. The restriction of having a source and a sink means that out resulting simplicial complex has less high dimensional 

simplices but the ones that are there have a directionality. We are homing in on configurations of neurons through which 

information is flowing not just vibrating around randomly. We have a theory about how to analyze a system of neurons. 

a. Build a graph where the vertices represent the neurons, and the directed edges represent the synaptic transmission. 

b. Convert that graph into a directed simplicial complex. 
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c. Compute the topological invariant like Betti numbers.  

Now we test the theory. We need to ensure that this topological interpretation is actually helpful data that illuminates signifi-

cant features of neural structures. So, what sort of simplices are exhibited in the reconstructed brain? 

 

Figure 7. of the number of directed simplices of each dimension within a digitally reconstructed brain 

 

  This shows the number of directed simplices of each dimension within the digitally reconstructed brain. On checking several 

variants and found that the reconstructions consistently contained directed simplices of dimensions up to six or seven with as 

many as 80 million directed three simplices. How do we know if this information is significant in our research? 

To check this a random graph is built called Erdős Rènyi Graph with the same number of neurons, or vertices, and the same 

average connectivity. It is basically the graph of a random brain. 

 

Figure 8. of number of directed simplices of each dimension  

  And this shows the number of directed simplices of each dimension within it. There is way less which is a good indication 

that all the simplices with the actual neural graphs are not just noise, but an important organizing feature. In a static picture of 

a brain structure there are a surprising number of simplices, but what happen to these simplices when we look at a dynamic 

picture – when we watch the brain change over time? 
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To find out we give the reconstructed brains a stimulus and recorded the shape of the neural network at little time slices. How 

did the simplices and simplicial complexes change over time? In the graph representing. 

 

Figure 8. Number of edges as time passes in a graph connecting neurons 

 

 

Figure 9. of first and third betti numbers in a graph connecting neurons 

 

  These are the first and third betti numbers. The axes show the first and third betti numbers so it’s showing how many holes 

of various dimensions the brain simplicial complex has.  

They grow and then shrink. 

This happened with several different models and different stimuli. In response to the stimuli, the neural network builds up 

complicated and high dimensional structure and then collapses the whole thing. hese intricate simplicial complexes seem to 

develop in response to neural activity. The simplicial complexes highlight a clear pattern in the structure of connections among 

neurons. This research can help to create topological model of a system of neurons as its learning a task and see how learning 

changes a brain’s simplicial complexes. 
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Conclusion 

The definite goal is to give a comprehension of how the creature takes in tactile data, how such data is coordinated and utilized 

in the brain, and how the result of such handling brings about significant choices and ways of behaving by the life form to 

permit it to work and flourish in its current circumstance. This try includes the structure of computational models that plan to 

duplicate and clear up noticed or estimated information for show up at a more profound comprehension of the elements of 

brain work. Starting with a bunch of test and perceptions or estimations, a model is proposed that intends to give a bunch of 

decides or connections that whenever offered the underlying trial perspective (or possibly some portion of such a set) would 

have the option to depict and make sense of a few wanted angles or properties of the test estimations. As a rule, this interaction 

quite often starts with a subjective “guess” above how the information fits together and what are the reasonable principles 

that oversee the connections between it. The model, once built, I as yet just an estimate, thus testing it determined to assemble 

fortuitous help for it (against it) is then complete by mathematical reproductions of the cycle being modelled, frequently where 

the responses or results are known from try and can measure up to the results figured by the model. Computational neurosci-

ence writing is loaded with perfectly numerically built models that negligibly affect standard neuroscience or our comprehen-

sion of brain work along these lines. The well-known hypothetical physicist Richard Feynman once composed that “individuals 

who wish to dissect nature without utilizing math should agree to a diminished arrangement.” 
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