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  Abstract 

Partial Differential Equations are fundamental mathematical tools used to model phys-
ical phenomena across various disciplines such as physics, engineering, and economics. 
Solving PDEs often involves the concept of distributions, which extends the classical no-
tion of functions to more generalized objects. This paper provides an introduction to 
PDEs, outlines the basic concepts of distribution theory, and discusses their interplay in 
solving PDEs. and distributional derivatives its convergence with distributional solution 
with space 𝒟′(𝛺) its extended form with weak derivatives. 
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1. Introduction  

Calculus has long been the foundation of mathematical analysis, offering strong tools for modelling and understanding a wide 

range of phenomena in scientific fields [1-3]. But when it comes to handling complicated systems that display non-local or 
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memory-dependent behaviours, classical calculus, which is based on integer-order differentiation and integration, frequently 

fails. The idea of differentiation and integration is extended to non-integer orders in fractional calculus, a field of mathematical 

analysis, as a result of this limitation. Numerous disciplines, including physics, engineering, biology, economics, and finance, 

have used fractional calculus. Among other things, its capacity to explain fractal geometry, viscoelastic materials, and anoma-

lous diffusion has attracted a lot of interest from scientists looking for more precise models of processes that occur in the 

actual world [4-7]. Of particular note, fractional differential equations have become essential instruments for the analysis of 

complicated dynamics that defy standard models. 

Furthermore, our knowledge of how to precisely define solutions for a variety of differential equations has advanced 

significantly thanks to the connection between distribution theory and partial differential equations (PDEs) [7-14]. Laurent 

Schwartz developed distribution theory in the middle of the 20th century, and it offers a framework for expanding the concept 

of functions to include generalized functions or distributions in addition to basic smooth functions. With this addition, singu-

larities and discontinuities that frequently occur in the setting of PDEs can be treated, allowing for a more comprehensive 

formulation and analysis of solutions. 

In this work, we investigate the role of fractional calculus and its importance when dealing with complex systems that 

exhibit non-local behaviors or memory effects. In addition, we explore the complex relationship that exists between distribu-

tion theory and partial differential equations, looking at how the basic ideas of distribution theory improve our comprehension 

and analysis of PDEs and ultimately open the door to more thorough mathematical modelling techniques. 

1.1. Introduction to Partial Differential Equations (PDEs)  

Partial Differential Equations (PDEs) are equations involving functions of multiple variables and their partial derivatives. They 

are used to describe various physical phenomena where the rates of change of quantities depend on multiple independent 

variables. Examples of systems that can be described by PDEs include heat conduction, fluid dynamics, quantum mechanics, 

and electromagnetism [15-22]. 

 

A general form of a first-order linear PDE is: 

𝑎1(𝑥, 𝑦)
∂𝑢

∂𝑥
+ 𝑎2(𝑥, 𝑦)

∂𝑢

∂𝑦
= 𝑓(𝑥, 𝑦, 𝑢,

∂𝑢

∂𝑥
,

∂𝑢

∂𝑦
)                 (1.1) 

Similarly, a second-order linear PDE can be represented as: 

𝑎(𝑥, 𝑦)
∂2𝑢

∂𝑥2 + 2𝑏(𝑥, 𝑦)
∂2𝑢

∂𝑥 ∂𝑦
+ 𝑐(𝑥, 𝑦)

∂2𝑢

∂𝑦2 = 𝑓(𝑥, 𝑦, 𝑢,
∂𝑢

∂𝑥
,

∂𝑢

∂𝑦
,

∂2𝑢

∂𝑥2 ,
∂2𝑢

∂𝑥 ∂𝑦
,

∂2𝑢

∂𝑦2)          (1.2) 

1.2. Introduction to Distribution Theory  

Distribution theory, also known as generalized function theory, extends the concept of functions to a larger class of objects 

called distributions. These objects allow for the rigorous treatment of functions that are not necessarily smooth or integrable. 

A distribution is defined as a linear functional on a space of test functions, which are typically smooth and have compact sup-

port [23]. 

The space of test functions is often denoted by 𝐷(Ω), where Ω is an open subset of ℝ𝑛. A distribution 𝑇 acts on a test 

function 𝜑 ∈ 𝐷(Ω) by the integral: 

< 𝑇, 𝜑 >= ∫  
Ω

𝑇(𝑥)𝜑(𝑥)𝑑𝑥                  (1.3) 

Distributions are used to generalize the notion of derivatives. For example, the Dirac delta function 𝛿(𝑥) is a distribution that 

represents a point mass at the origin. It is defined by its action on a test function: 
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< 𝛿, 𝜑 >= 𝜑(0)                      (1.4) 

1.3. Solving PDEs using Distribution Theory   

Distribution theory provides a powerful framework for solving PDEs, especially those with generalized solutions. The notion of 

weak solutions, which are solutions in the distributional sense, allows for the treatment of PDEs with discontinuous coefficients 

or singular sources. 

 

Consider the Poisson equation in two dimensions: 

∇2𝑢 = 𝑓(𝑥, 𝑦)                         (1.5) 

In distributional form, the Poisson equation becomes: 

∫  
Ω

∇2𝑢𝜑 𝑑𝑥 = ∫  
Ω

𝑓𝜑 𝑑𝑥                       (1.6) 

Using integration by parts and the definition of distributions, we can rewrite this equation as: 

− ∫  
Ω

∇𝑢 ⋅ ∇𝜑 𝑑𝑥 = ∫  
Ω

𝑓𝜑 𝑑𝑥                        (1.7) 

This equation holds for all test functions 𝜑 ∈ 𝐷(Ω), which leads to the weak form of the Poisson equation. By considering 

appropriate test functions, one can obtain solutions to PDEs in the distributional sense. 

2. Methodology    

When we talked about Burger's equation and Holmgren's theorem, we remarked on the topic of distributional solutions. The 

finding that for a linear partial P differential operator was crucial in demonstrating the latter, 

𝑃 = ∑|𝛼|≤𝑚  𝑎𝛼(𝑥)𝐷𝛼  and a classical solution of 𝑃𝑢 = 𝑤 in Ω (open subset of ℝ𝑛 ) with 𝐷𝛽𝑢 = 0 on ∂Ω for |𝛽| ≤ 𝑚 −

1, we have the integration by parts formula 

∫  
Ω

𝑤 ⋅ 𝑣𝑑𝑥 = ∫  
Ω

∑  |𝛼|≤𝑚 (−1)|𝛼|𝐷𝛼(𝑎𝛼(𝑥)𝑣) ⋅ 𝑢𝑑𝑥                       (2.1) 

valid for all 𝑣 ∈ 𝐶0
∞(Ω). The formula (1) makes sense for 𝑢 merely continuous or even 𝑢 ∈ 𝐿𝑙𝑜𝑐

1 (Ω) and it is natural to de-

clare 𝑢 ∈ 𝐿𝑙𝑜𝑐
1 (Ω) a "weak" or a "distributional" solution of 𝑃𝑢 = 𝑤 if it satisfies (1) for all 𝑣 ∈ 𝐶0

∞(Ω). 

Generally, with any (real-or) complex valued function 𝑓: Ω → ℂ, continuous on Ω ⊂ ℝ𝑛 open (or even 𝑢 ∈ 𝐿loc 
1 (Ω) ), we can 

associate its integrals against test functions by defining 

𝑓[𝜙]: = ∫  
Ω

𝑓(𝑥)𝜙(𝑥)𝑑𝑥                            (2.2) 

for 𝜙 ∈ 𝒟: = 𝐶0
∞(Ω). Note that 

• 𝑓[𝜙] is a linear functional on the space of test functions 𝒟 

• 𝑓[𝜙] is well defined for 𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (Ω) 

• the definition supports the idea of "smeared averages" from physics: If 𝑓 is an observable like a velocity or a tem-

perature, you will never be able to determine its value at a point but only averaged over a small interval (finite de-

tector size). 

• If 𝑓 is continuous, then 𝑓[𝜙] determines 𝑓 uniquely (so in some sense we don't lose anything by considering 

𝑓[𝜙] instead of 𝑓 ) 
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• One can differentiate 𝑓 in the sense of distributions by defining 

𝐷𝑘𝑓[𝜙]: = −𝑓[𝐷𝑘𝜙]              (2.3) 

which agrees with the usual derivative if 𝑓 ∈ 𝐶1 by the standard integration by parts formula. Therefore, linear partial differ-

ential operators act naturally on the functional 𝑓[𝜙]. 

3. The space D' (Ω)   

We broaden our view further and consider general linear functional on the space 𝒟 of test-functions (of which those arising 

by integration against an 𝐿1 function, the 𝑓[𝜙] above, are a particular example). We shall introduce s notion of continuity 

of such functionals below (which is desirable if we would like to keep the interpretation as physical observables). This notion 

of continuity its most easily formulated via sequential continuity. 

Definition. We say that 𝜙𝑛 ∈ 𝒟 converges to 𝜙 in 𝒟 if 

• there is a compact set 𝐾 such that all 𝜙n vanish outside 𝐾 

• there is a 𝜙 ∈ 𝒟 such that for all 𝛼 ∈ ℕ𝑑 we have 𝜃𝛼𝜙𝑛 → 𝜃𝛼𝜙 uriformnly in 𝑥. 

Definition. A distribution is a linear functional ℓ: 𝒟(Ω) → ℂ, which is continuous in the sense that if 𝜙𝑛 converges to 𝜙 in 

𝒟, the ℓ(𝜙𝑛) → ℓ(𝜙). The vectorspace of distributions in denoted 𝒟′(Ω). 

Example. Each continuous (or 𝐿loc 
1  ) function generates a distribution via (2). Such distributions are called regular distribu-

tions. Not every distribution is regular, as the next example shows. 

Example. The distribution 𝛿ℓ[𝜙] = 𝜙(𝜉) is not regular. Indeed, the formula ∫ 𝑑𝑥𝑔(𝑥)𝜙(𝑥) = 𝜙(𝜉) would imply that 𝑔 ∈

𝐿loc 
1  vanishes everywhere (modulo a set of measure 0). This example also makes it intuitive to talk about the support of a 

distribution: If 𝑓[𝜙] = 𝑔[𝜙] for all 𝜙 with support in 𝜔 ⊂ Ω, we Il say that the two distributions agree in 𝜔. 

The above notion of continuity may be cumbersome to check in practical applications. However, we have the following 

3.1. Proposition: The function ℓ: 𝒟(Ω) → ℂ belong to 𝒟′(Ω) if and only if for every compact subset 𝐾 ⊂ Ω there is an in-

teger 𝑛(𝐾, ℓ) and a 𝑐 ∈ ℝ such that for all 𝜙 ∈ 𝒟(Ω) with support in 𝐾 we have 

|ℓ[𝜙]| ≤ 𝑐 ∥ 𝜙 ∥𝑐𝑛   with ∥ 𝜙 ∥ 𝑐𝑛 = ∑  |𝛼|≤𝑛 max
𝑥

 |𝜃𝛼𝜙|                     (3.1) 

Proof. The "if" follows immediately from the estimate (3.1). For "only if" suppose that (3.1) was violated for some compact set 

𝐾. Then we can find for this 𝐾 a sequence 𝜙𝑛 with ∥∥𝜙𝑛∥∥𝐶𝑛 = 1 and |ℓ[𝜙𝑛]| ≥ 𝑛 (otherwise the estimate (3.1) would hold 

with = 𝑁 ). But then 𝜓𝑛 = 𝑛−1/2𝜙𝑛 is a sequence converging to wero in 𝒟, while |ℓ[𝜓𝑛]| ≥ 𝜋1/2 does not go to zero. 

Contradiction. 

If there is a 𝑐 such that (3.1) holds, ℓ is said to be of order 𝑛 on 𝐾. IF ℓ is of order 𝑛 on every compact subset 𝐾 ⊂ Ω, 

the ℓ is of order 𝑛 on Ω. 

Example. Any regular distribution is of order 0. The Dirac delta of Example is also under zero. 

Example. The principal value distribution 

 

ℓ[𝜙]: = lim
𝜅→0

 ∫  
|𝑧|>𝑐

𝜙(𝑥)

𝑥
= 𝑃. 𝑉. ∫  

𝜙(𝑥)

𝑥
                           (3.2) 

is a distribution of under 1 (near 0 at least; away from zero it is order 0). The proof is an exercise. Hint: Taylor-expand 𝜙 near 

0 and use the symmetry of the integral. 

4. Distributional Derivatives   

We can define the distributional derivative 𝐷𝑘𝑓 as the distribution 
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𝐷𝑘𝑓[𝜙] = −𝑓[𝐷𝑘𝜙]  or more generally 𝐷𝛼𝑓[𝜙] = (−1)|𝛼|𝑓[𝐷𝛼𝜙 ∣.                   (4.1) 

You should check that this indeed defines a distribution. 

Compute 𝐷𝑘𝛿𝜖|𝜙|. 

Therefore, we can apply a linear operator 𝑃 of order 𝑚 to a distribution 𝑢[𝜙] vir 

𝑃𝑢[𝜙] = 𝑢[𝑃𝑡𝜙].                               (4.2) 

Below we will be particularly interested in distributional solutions of 

𝑃𝑢 = 𝛿𝑓 −  𝑢[𝑃𝑡𝜙]. 

A distribution 𝑢 satisfying the equation is called a fundamental solution with pole 𝜉 for the operator 𝑃. 

5. Relation with weak derivatives    

If 𝑓 is a regular distribution, i.e. 

 

𝑓[𝜙] = ∫  
Ω

𝜙(𝑥)𝑓(𝑥)𝑑𝑥                            (5.1) 

 

for some 𝑓 ∈ 𝐿loc 
1 (Ω) then it may be that the distributional derivative is again a regular distribution. In other words, there 

could be a 𝑔 ∈ 𝐿Ioc 
1  such that 

 

𝐷𝑘𝑓[𝜙]: = − ∫  𝐷𝑘𝜙(𝑥)𝑓(𝑥)𝑑𝑥 = ∫  𝜙(𝑥)𝑔(𝑥)𝑑𝑥                     (5.2) 

 

holds for any 𝜙 in 𝒟. In this case, we say that 𝑓 has 𝑔 = 𝐷𝑘𝑓 as its weak derivative. Using an argument similar to one 

already used above, it is easy to show that the weak derivative, if it exists, is unique. 

To see that not every function ( ≡ regular distribution) has a weak derivative consider the example of the step function 

𝐻: ℝ → ℝ defined as 

𝐻(𝑥) = {
1  for 𝑥 ≥ 0
0  for 𝑥 < 0

 

This is clearly in 𝐿Ioc 
1  but the distributional derivative is easily seen to be the delta distribution in view of the following com-

putation: 

 

𝐷𝑥𝐻[𝜙] = − ∫  
∞

−∞
𝐷𝑧𝜙(𝑥)𝐻(𝑥)𝑑𝑥 = ∫  

∞

0
− 𝐷𝑧𝜙(𝑥)𝐻(𝑥) = 𝜙(0).                 (5.3) 

 

Using the notion of a weak derivatives one can define various notions of "weak solutions" to a PDE, which will typically require 

some number of weak derivatives to exist. 

Some questions: 

a. Show that the distributional derivative of log |𝑥| is 𝑃 ⋅ 𝑉 ⋅
1

𝑥
. 

b. (Fritz John, 3.6 (3)) Show that the function 

𝑢(𝑥1, 𝑥2) = {
1  for 𝑥1 > 𝜉1, 𝑥2 > 𝜉2

0  for all other 𝑥1, 𝑥2
 

defines a fundamental solution with pole (𝜉1, 𝜉2) of the operator 𝐿 = 
𝜃2

∂𝑧1𝛿𝑥2
 in the 𝑥1𝑥2-plane. 
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6. More on Distributions (non-examinable) 

6.1. Convergence of Distributions    

Definition. A sequence of distributions ℓ𝑛 ∈ 𝒟′(Ω) converges to ℓ ∈ 𝒟′(Ω) if and only if for every teat function 𝜙 ∈ 𝒟(Ω) 

we have 

ℓ𝑛[𝜙] → ℓ[𝜙]                              (6.1) 

with the usual notion of convergence in C. We will write ℓ𝑛 ∼ ℓ to denote this convergence and say that ℓ𝑛 convergences 

"weakly" or "in the sense of distributions" to ℓ. 

Exercise: Show that the sequence of (regular) distributions 𝑛2𝑒𝑖𝑛𝑧 converges weakly to zero as 𝜋 → ∞. 

Exercise: Let 𝑗 ∈ 𝒟(ℝ𝕕) with ∫
ℝ𝑑  𝑗(𝑥)𝑑𝑑𝑥 = 1. Define 𝑗𝑘(𝑥) = 𝜖−𝑑𝑗 (

𝑧

𝑐
). Show that 𝑗𝑐 → 𝛿p. 

The previous example is remarkable as it shows that the non-regular delta distribution can be approximated by function in 𝒟. 

In fact, any element in 𝒟′ can be approximated in this way: The space 𝒟 is dense in 𝒟′. This can be used to extend (uniquely) 

the usual operations of calculus (differentiation, translation, convolution) to 𝒟′, which is very useful for PDE. 

6.2. Extending Calculus from D (Ω) to D' (Ω)    

We will run in a rather informal way through the main ideas of extending various operations of calculus from test functions to 

distributions. The key is Proposition 2 in the Appendix of Rauch's book, which we repeat below. Remember we already have a 

notion of convergence in 𝒟, Definition. 

Proposition: Suppose 𝐿: 𝒟(Ω1) → 𝒟(Ω2) is a linear, sequentially continuous map. Suppose in addition that there is a linear, 

sequentially continuous map 𝐿t: 𝒟(Ω2) → 𝒟(Ω1) which is the transpose of 𝐿 in the sense that 

∫  
Ω2

𝐿𝜙 ⋅ 𝜓 = ∫  
Ω1

𝜙 ⋅ 𝐿t𝜓  holds for all 𝜙 ∈ 𝒟(Ω1), 𝜓 ∈ 𝒟(Ω2).                  (6.2) 

Then the operator 𝐿 extends to a sequentially continuous map of 𝒟′(Ω1) → 𝒟′(Ω2) given by 

𝐿(ℓ)[𝜓] = ℓ[𝐿t𝜓]  for all  ℓ ∈ 𝒟′(Ω1), 𝜓 ∈ 𝒟(Ω2).                             (6.3) 

You can find the (very easy) proof in Rauch's book or do it yourself. This simple proposition allows us to define the following 

operations on distributions 

• multiplication of a distribution with a 𝐶∞ function 𝑓 ∈ 𝐶∞(Ω). Since on test functions the transpose is itself (mul-

tiplication by 𝑓 ), we have 

(𝑓 − ℓ)[𝜓] = ℓ[𝑓 ⋅ 𝜓] 

• translation of a distribution (say Ω = ℝ𝑑  so that we don't have to keep track of domains). Since (𝜏𝑦𝑓)(𝑥) = 𝑓(𝑥 −

𝑦) on test functions has transpose 𝜏−𝑦 we have 𝜏y(ℓ)[𝜓] = ℓ[𝜏−g𝜓] on distributions. 

• reflection of a distribution: ℜ(ℓ)|𝜓⟩ = ℓ[ℜ𝜓], ss the transpose of (ℜ𝑓)(𝑥) = 𝑓(−𝑥) on test functions is itself. 

• derivative of a distribution (we already did that!) 

• convolution of a distribution with a 𝐶∞ function (see below) 

The remarkable point of convolving a distribution with a smooth function is that the result is actually a smooth function. You 

will prove this below. This is very useful and can be used to show that we can approximate any element in 𝒟′(ℝ𝑑) by elements 

in 𝒟(ℝ𝑑). 

Let Ω = ℝ𝑑  and 𝑓 ∈ 𝒟(ℝ𝑑). For 𝑔 ∈ 𝒟(ℝ𝑛), the convolution of 𝑔 with 𝑓 is defined ss 

(𝑓 ∗ 𝑔)(𝑥): = ∫  
ℝ4 𝑓(𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦 = (𝑔 ∗ 𝑓)(𝑥).                        (6.4) 
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Exercise: Show that (on test functions) the transpose of convolution with 𝑓 is convolution with ℜ𝑓 

Therefore we define 

(𝑓 ∗ ℓ)[𝜓] = ℓ[ℜ𝑓 ∗ 𝜓]                            (6.5) 

7. Applications of Fractional Calculus    

Fractional calculus involves derivatives and integrals of non-integer (fractional) orders. Its applications span numerous areas: 

a. Physics 

Anomalous Diffusion: Fractional calculus models sub-diffusion and super-diffusion processes, which cannot be described by 

classical diffusion equations. 

Viscoelastic Materials: Fractional derivatives describe the complex behavior of materials that exhibit both viscous and elastic 

characteristics. 

b. Engineering 

Control Theory: Fractional order controllers (like PI^λD^μ controllers) offer more flexible and robust control strategies. 

Signal Processing: Fractional Fourier transform provides a tool for time-frequency analysis, extending the classical Fourier trans-

form. 

c. Biology and Medicine 

Modeling of Biological Systems: Fractional models describe the memory and hereditary properties of various biological tissues. 

Tumor Growth: Fractional differential equations can model the growth dynamics of tumors more accurately than integer-order 

models. 

d. Finance 

Option Pricing Models: Fractional calculus helps model markets with memory effects, improving the accuracy of financial mod-

els 

7.1. Relationship between Distribution Theory and Partial Differential Equations      

Distribution theory, or the theory of generalized functions, provides a framework for extending the concept of functions and 

derivatives, enabling the treatment of functions that are not necessarily smooth. This theory is crucial for dealing with PDEs, 

particularly when solutions involve singularities or are not well-defined in the classical sense. 

a. Fundamental Solutions 

The Dirac delta function, a key object in distribution theory, is often used as a fundamental solution to linear PDEs, serving as 

a Green's function to express solutions in terms of source terms. 

b. Weak Solutions 

In many PDEs, classical solutions may not exist. Distribution theory allows for the formulation of weak solutions, where equa-

tions are satisfied in an integral sense. This approach is vital in fields such as fluid dynamics and quantum mechanics. 

c. Regularization Techniques 

Distributions help in regularizing PDEs with singular coefficients or initial/boundary data, making it possible to analyze and 

solve otherwise intractable problems. 

d. Fourier Transform and PDEs 

Distribution theory extends the Fourier transform to a broader class of functions, facilitating the solution of PDEs in the fre-

quency domain. 
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7.2. Combining Fractional Calculus and Distribution Theory in PDEs       

Fractional calculus and distribution theory can be combined to tackle complex PDEs, offering a robust mathematical frame-

work: 

a.  Fractional Differential Equations (FDEs) 

Distribution theory aids in defining and solving FDEs, especially when solutions are not smooth. The generalized functions can 

represent solutions with discontinuities or singularities. 

b.  Green's Functions for FDEs 

Extending the concept of Green's functions to fractional PDEs often involves distributions, providing integral representations 

of solutions. 

c. Stochastic Processes 

Fractional and distributional methods are used in modeling stochastic processes governed by fractional PDEs, applicable in 

fields such as finance and physics. 

Fractional calculus and distribution theory enrich the study of PDEs by providing tools to model and analyze phenomena with 

memory effects, singularities, and non-local interactions. These advanced mathematical concepts extend the boundaries of 

traditional calculus and enable the solution of more complex and realistic problems in various scientific and engineering disci-

plines. 

8. Conclusion        

Partial Differential Equations (PDEs) play a crucial role in modelling various physical phenomena. Distribution theory provides 

a powerful framework for solving PDEs, especially those with generalized solutions. By extending the notion of functions to 

distributions, one can tackle PDEs with discontinuous coefficients or singular sources. Understanding the interplay between 

PDEs and distribution theory is essential for advancing in the fields of mathematics, physics, and engineering.  
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