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  Abstract 

The absence of a general definition for convolutions and products of distribution is 
one of the issues with distribution theory. It is discovered in quantum theory and 

physics that certain convolutions and products such as 
1

𝑥
+ 𝛿 are in usea description 

of the term "product of distributions" and a list of sample product results using a par-
ticular delta sequence 𝛿𝑛(𝑥) = 𝐶𝑚𝑛𝑚𝜌(𝑛2𝑟2) in an 𝑚-dimensional space. The Fou-
rier transform is applied to 𝐷′(𝑚) and the exchange formula for defining ultradis-
tribution convolutions in 𝑍′(𝑚) in terms of products of distributions in 𝐷′(𝑚). We 

are going to demonstrate a theorem that says that for any items 𝑓 and �̃� in 

𝑍′(𝑚), the neutrix convolution 𝑓 ⊗ �̃� exists in 𝑍′(𝑚) if and only if the product 𝑓 ∘
𝑔 exists in 𝐷′(𝑚). Some convolutional findings are derived using van der Corput's 
neutrix calculus. Let V'(M) be a smooth m-manifold M's space of distributions, each 
specified by an assemblage of 'compatible' ordinary distributions (components) dis-
played on the charts of some 𝐶∞ on M. Drawing on van der Corput's concept of 
neutrix limitations, we expand the definition of the neutrix distribution product in this 
context. onto the space V'(M). We establish the existence of certain theorems re-
garding the neutrix distribution product in the space V'(M) under various assumptions 
on the neutrix product of the constituents. 
 

Keywords 

Distribution theory, m-dimensional space, ultradistribution convolutions, neutrix cal-
culus, delta sequence. 

 

1. Introduction  

First, review the definition of generalized functions (distributions) that we accept for any arbitrary smooth m-dimensional 

real manifold. From now on, we shall refer to this manifold as a "manifold." For every manifold M, where some 𝐶∞.  

{𝜅𝑖 , 𝑀𝑖}𝑖∈𝐼 on it, we shall use the notation: �̃�𝑖 = 𝜅𝑖(𝑀𝑖) ⊆ 𝐑𝑚, 𝑀𝑖𝑗 = 𝑀𝑖 ∩ 𝑀𝑗  and 𝜅𝑖𝑗: = 𝜅𝑖(𝜅𝑗
−1): 𝜅𝑗(𝑀𝑖𝑗) → 𝜅𝑖(𝑀𝑖𝑗) for 

Open Access

https://doi.org/10.54060/a2zjournals.jase.66
https://doi.org/10.54060/a2zjournals.jase.66
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


C. M. Tiwari, V. Joshi 

 

 

ISSN (Online) : 2583-1372 2 
Journal of Applied Science and Education 

(JASE) 
A2Z Journals 

 

 

the (coordinate) diffeomorphic maps of class 𝐶∞ of open sets in 𝐑𝑚(𝑖, 𝑗 ∈ 𝐼). Further, for arbitrary open subset 𝑈 of 𝑀 

we shall denote: 𝑈𝑖 = 𝑈 ∩ 𝑀𝑖 , 𝑈𝑖𝑗 = 𝑈𝑖 ∩ 𝑈𝑗  and 𝑈𝑖 = 𝜅𝑖(𝑈𝑖) ⊆ 𝐑𝑚(𝑖, 𝑗 ∈ 𝐼). Later on we shall often need the following. 

Theorem 1. Let 𝜅: 𝑈1 → 𝑈2 be a 𝐶∞-diffeomorphic map of open sets in 𝐑𝑚. Then there is a unique continuous linear map 

of the distribution spaces 𝜅∗: 𝒟′(𝑈2) → 𝒟′(𝑈1): 𝐹 ↦ 𝜅∗𝐹 (pull-back of 𝐹 by  ) coinciding with the composition of func-

tions 𝐹(𝜅(𝑥)) whenever 𝐹 is in 𝐶0(𝑈2) and it holds for any test-function 𝜙 in 𝒟(𝑈1) 

 
⟨𝜅∗𝐹, 𝜙⟩ = ⟨𝐹, 𝜓⟩,   where 𝜓 = 𝜙(𝜅−1)|det 𝐷𝜅−1| ∈ 𝒟(𝑈2).                  (1.1) 

Further, for each function 𝑓 in 𝐶∞(𝑈1) 

𝜅∗(𝐹 ⋅ 𝑓) = 𝜅∗𝐹 ⋅ 𝑓(𝜅) 

and for any open subset 𝑉2 of 𝑈2 and 𝑉1 = 𝜅−1(𝑉2) open in 𝑈1 

𝜅∗(𝐹 ∣ 𝑣2) = (𝜅∗𝐹) ∣ 𝑣1, 

Where the restriction 𝐹|𝑣 is defined by ⟨𝐹 ∣ 𝑣, 𝜓⟩ = ⟨𝐹, 𝜓‾⟩ for each 𝜓 in 𝒟(𝑈) and 𝜓‾ = {𝜓 on 𝑉, 0 on 𝑈 ∖ 𝑉}. 

 

Proof. For an arbitrary distribution 𝐹 in 𝐷′(𝑈2), let {𝐹𝑛(𝑥)} be a sequence of infinitely differentiable functions in 𝑈2 

converging weakly to 𝐹, as 𝑛 → ∞. Then, on making the substitution 𝑡 = 𝜅(𝑥), we have for any 𝜙 in 𝒟(𝑉1): 

 

∫  
𝑈1

𝐹𝑛(𝜅(𝑥))𝜙(𝑥)𝑑𝑥 = ∫  
𝑈2

𝐹𝑛(𝑡)𝜙(𝜅−1(𝑡))|det 𝐷𝜅−1|𝑑𝑡 = ∫  
𝑈2

𝐹𝑛(𝑡)𝜙(𝑡)𝑑𝑡              (1.2) 

   With a test-function 𝜓 in 𝒟′(𝑈2) defined as in. Now taking the weak limits as 𝑛 → ∞, we see that the sequence 

{𝐹𝑛(𝜅(𝑥))} converges to the unique distribution 𝜅∗𝐹  in 𝒟′(𝑈1) given by above equation. Moreover, the map 𝜅∗  : 

𝒟′(𝑈2) → 𝒟′(𝑈1): 𝐹 ↦ 𝜅∗𝐹 is linear, continuous and coincides with the ordinary composition of functions in 𝐶0(𝑈2), by its 

construction. Further, equations readily follow on noting that: 

 

∫  
𝑈1

(𝐹𝑛 ⋅ 𝑓)(𝜅(𝑧))𝜙(𝑥)𝑑𝑥 = ∫  
𝑈1

𝐹𝑛(𝜅(𝑧)) ⋅ 𝑓(𝜅(𝑧))𝜙(𝑧)𝑑𝑥                   (1.3) 

    Both expressions in this equation clearly lead to the same distribution in 𝒟′(𝑈1), when we make the substitution 𝑡 =

𝜅(𝑧) and pass to the weak limits, as 𝑛 → ∞. 

    In order to prove, we get the following chain of equations for arbitrary sequence {𝐹𝑛(𝑥)} weakly converging to 𝐹, on 

making the due substitutions 

∫  
𝑉1

  (𝐹n ∣ 𝑉2)(𝜅)𝜙(𝑥)𝑑𝑥 = ∫  
𝑉2

  (𝐹N ∣ 𝑉2)(𝑡)𝜓(𝑡)𝑑𝑡  [with 𝜓 defined as in (1)]

∫  
𝑉1

  (𝐹n ∣ 𝑉2)(𝜅)𝜙(𝑥)𝑑𝑥  = ∫  
𝑈2

 𝐹𝑛(𝑡)𝜓‾(𝑡)𝑑𝑡 [𝜓‾ = 𝜓 on 𝑉2, 0 on 𝑈2 ∖ 𝑉2]

∫  
𝑉1

  (𝐹n ∣ 𝑉2)(𝜅)𝜙(𝑥)𝑑𝑥  = ∫  
𝑈1

  (𝐹N(𝜅(𝑥)))𝜙‾(𝑥)𝑑𝑥 [𝜙‾ = 𝜙 on 𝑈1, 0 on 𝑈1 ∖ 𝑉1]

∫  
𝑉1

  (𝐹n ∣ 𝑉2)(𝜅)𝜙(𝑥)𝑑𝑥  = ∫  
𝑉1

  (𝐹𝑛(𝜅(𝑥)))|
𝑉1

𝜙(𝑥)𝑑𝑥.

              (1.4) 

    Since the restriction map 𝑅𝑉: 𝐹 ↦ 𝐹|𝑉 is linear and continuous, we obtain on passing to the weak limits as 𝑛 → ∞, 

that ⟨𝜅∗(𝐹 ∣ 𝑣2), 𝜙⟩ = ⟨(𝜅∗𝐹) ∣ 𝑣1, 𝜙⟩ for any 𝜙 in 𝒟(𝑉1). This completes the proof of the theorem. 

In the following, let 𝜌(𝑥) be a fixed infinitely differentiable function with the properties 

(i) 𝜌(𝑥) = 0,  |𝑥| ≥ 1, 
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(ii) 𝜌(𝑥) ≥ 0, 

(iii) 𝜌(𝑥) = 𝜌(−𝑥), 

(iv) ∫
−1

1
 𝜌(𝑥)𝑑𝑥 = 1. 

    We define the function 𝛿𝑛(𝑥) by 𝛿𝑛(𝑥) = 𝑛𝜌(𝑛𝑥) for 𝑛 = 1,2,⋯. It is clear that {𝛿𝑛} is a sequence of infinitely dif-

ferentiable functions converging to the Dirac delta-function 𝛿. 

Now let 𝐷 be the space of infinitely differentiable functions with compact support. If 𝑓 is an arbitrary distribution in 𝐷′, 

we define the function 𝑓𝑛 by 𝑓𝑛 = 𝑓 ∗ 𝛿𝑛. It follows that {𝑓𝑛} is a sequence of infinitely differentiable functions converging 

to 𝑓. 

The following definition was given by B. 

Definition 1. Let 𝑓 and 𝑔 be distributions in 𝐷′ and let 𝑔𝑛 = 𝑔 ∗ 𝛿𝑛. We say that the neutrix product 𝑓 ∘ 𝑔 of 𝑓 and 𝑔 

exists and equals ℎ if 

𝑁 − lim
𝑛→∞

 (𝑓𝑔𝑛 , 𝜙) = (ℎ, 𝜙)                      (1.5) 

For all 𝜙 in 𝐷, where 𝑁 is the neutrix (see van der Corput [4]) having domain 𝑁′ = {1,2,⋯ , 𝑛,⋯ } and range 𝑁′′ the 

real numbers with negligible functions finite linear sums of the functions:  

 

𝑛𝜆ℓ𝑛𝑟−1𝑛,  ℓ𝑛𝑟𝑛(𝜆 > 0, 𝑟 = 1,2,⋯ )                     (1.6) 

And all functions of 𝑛 which converge to zero as 𝑛 tends to infinity. 

 

Let 𝐷′(𝑚) be the space of distributions defined on the space 𝐷(𝑚) of infinitely differentiable functions of the variable 

𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑚) with compact support.  

In order to give a definition for the neutrix product 𝑓 ∘ 𝑔 of two distributions 𝑓 and 𝑔 in 𝐷′(𝑚), we attempt to define a 

𝛿-sequence in 𝐷(𝑚) by putting: 

 

𝛿𝑛(𝑥1, 𝑥2, ⋯ , 𝑥𝑚) = 𝛿𝑛(𝑥1)⋯ 𝛿𝑛(𝑥𝑚),                      (1.7) 

where 𝛿𝑛 is defined as above. However, this definition is very difficult to use for distributions in 𝐷′(𝑚) which are functions 

of 𝑟, where 𝑟 = (𝑥1
2 + ⋯+ 𝑥𝑚

2 )1/2. Therefore, an alternative definition was introduced. 

From now on we let 𝜌(𝑠) be a fixed infinitely differentiable function defined on 𝑅+ = [0,∞) having the properties 

(i) 𝜌(𝑠) = 0, 𝑠 ≥ 1, 

(ii) 𝜌(𝑠) ≥ 0. 

Define the function 𝛿𝑛(𝑥), with 𝑥 ∈ 𝑅𝑚, by 

𝛿𝑛(𝑥) = 𝐶𝑚𝑛𝑚𝜌(𝑛2𝑟2)             

for 𝑛 = 1,2,⋯, where 𝐶𝑚 is a constant such that 

∫  
𝑅𝑚 𝛿𝑛(𝑥)𝑑𝑥 = 1.      

            

Definition 2. Let 𝑓 and 𝑔 be distributions in 𝐷′(𝑚) and let 

𝑔𝑛(𝑥) = (𝑔 ∗ 𝛿𝑛)(𝑥) = (𝑔(𝑥 − 𝑡), 𝛿𝑛(𝑡))                   (1.8) 

where 𝑡 = (𝑡1, 𝑡2, ⋯ , 𝑡𝑚). We say that the neutrix product 𝑓 ∘ 𝑔 of 𝑓 and 𝑔 exists and is equal to ℎ on the open interval 

(𝑎, 𝑏), where 𝑎 = (𝑎1, ⋯ , 𝑎𝑚) and 𝑏 = (𝑏1, ⋯ , 𝑏𝑚), if 

𝑁 − lim
𝑛→∞

 (𝑓𝑔𝑛 , 𝜙) = (ℎ, 𝜙)                           (1.9) 
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for all test functions 𝜙 is 𝐷(𝑚) with support contained in the interval (𝑎, 𝑏). 

2. Fourier Transform on 𝐃′(𝐦)  

As in Gel'fand and Shilov, we define the Fourier transform of a function 𝜙 in 𝐷(𝑚) by 

𝐹(𝜙)(𝜎) = 𝜓(𝜎) = ∫  
𝑅𝑚 𝜙(𝑥)𝑒𝑖(𝑥,𝜎)𝑑𝑥,                         (2.1) 

where (𝑥, 𝜎) denotes 𝑥1𝜎1 + ⋯+ 𝑥𝑚𝜎𝑚. 

The bounded support of 𝜙(𝑥) makes it possible for 𝜓 to be continued to complex values of its argument = (𝑠1, ⋯ , 𝑠𝑚) =

(𝜎1 + 𝑖𝜏1, ⋯ , 𝜎𝑛 + 𝑖𝜏𝑚) : 

𝜓(𝑠) = ∫  
𝑅𝑚 𝜙(𝑥)𝑒𝑖(𝑥,𝑠)𝑑𝑥.                                    (2.2) 

    Our new function 𝜓(𝑠), defined on 𝐶𝑚, in the space of functions of 𝑚 complex variables, is continuous and analytic in 

each of its variable 𝑠𝑘. If 𝜙(𝑥) vanishes for |𝑥𝑘| > 𝑎𝑘 , 𝑘 = 1,⋯ ,𝑚, then 𝜓(𝑠) satisfies the inequality 

|𝑠1
𝜎1 ⋯𝑠𝑚

𝑞𝑚𝜓(𝜎1 + 𝑖𝜏1, ⋯ , 𝜎𝑚 + 𝑖𝜏𝑚)| ≤ 𝐶𝑞exp (𝑎1|𝜏1| + ⋯+ 𝑎𝑚|𝜏𝑚|).                    (2.3) 

    Conversely, every entire function 𝜓(𝑠1, ⋯ , 𝑠𝑚) satisfying the above inequality is the Fourier transform of some 

𝜙(𝑥1, ⋯ , 𝑥𝑚) in 𝐷(𝑚) which vanishes for |𝑥𝑘| > 𝑎𝑘 , 𝑘 = 1,2,⋯ ,𝑚. 

The set of all entire analytic functions 𝑍(𝑚) with the property (1) is in fact the space 

𝐹(𝐷(𝑚)) = {𝜓: ∃𝜙 ∈ 𝐷(𝑚) such that 𝐹(𝜙) = 𝜓}.                             (2.4) 

    Convergence in 𝑍(𝑚) is defined vis corrvergense in 𝐷( m) : a sequence {𝜓n) tends to zero in 𝑍( m) If the sequerce 

[𝜙2} tends to 𝑧𝑒𝑟𝑎 in 𝐷(𝑚), wtere 𝐹(𝜙2) = 𝜓p . The Fourier transform } of a discrbution in 𝐷′(m) is an diradistribu-

tion in 𝑍′(m), i.t. a costimuous linear fincticeal 𝛼𝑎 = (m). In is delined by Purveral's equatisn 

( b, 𝜙) = 2𝜋(𝑓, 𝜙),  𝜙 ∈ 𝐷( m).                            (2.5) 

3. Convolution in 𝒁′(𝐦) 

We present the Fourier transform to define a convolution product in Z’(m) 

𝑓(𝛿𝑛)𝑎𝑛𝑑 𝛿𝑛. 

 (where 𝐺𝑛(𝑥) = 𝐶𝑛𝑛
𝑛𝜌(𝑣2𝑟2) ) and write 

𝑟0(𝑎) = 𝐹(𝜀𝑠)(𝑎) 

which is a function in 𝑍(𝑚) for 𝑛 = 1,2,⋯. 

From Parsevals equation: 

(𝜏∗, 𝜓) = 2𝜋(𝛿𝑛, 𝜙) ⇒ 2𝜋(𝛿, 𝜙) = 2𝜋𝜙(0)  = 2𝜋
1

2𝜋
∫  

∞

−∞
 𝜓(𝜌)𝑑𝜎

 = (1, 𝜓)
                      (3.1) 

where 𝜙 = 𝜙. 

    Therefore (𝑟n) is a sequence in 𝑍( m) ⊂ 𝑍′(m) converging to 1 in 𝑍′(m). 

    Now 𝑓 be an arbitrary ultra-distribution in 𝑍′(m). Then there exists a distribution 𝑓 in 𝐷(𝑚) such that �̂� = 𝐹(𝑓). 

Setting 𝑓𝑛 = 𝐹(𝑓 ∗ 𝐺n) = 𝐹(𝑓n), we have 

(𝑓, 𝑣) = 2𝜋(𝑓, 𝜙) → 2𝜋(𝑓, 𝜙) = (𝑓, 𝜓) 𝑛 → ∞                          (3.2) 

Lemma 1. Let g be an arbitrary ultradistribution in 𝑍′(𝑚) and let 𝑔𝑛 = 𝐹(𝑔 ∗ 𝜉𝑛) Then the function 

𝜃𝑛(𝜈) = {𝐺3(𝜌), 𝜓[𝜎 + 𝑣)}                            (3.3) 
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is in 𝑍(𝑚) for all 𝜓 in 𝑍(𝑚). 
Indeed. 

𝜃𝑛(𝜈)  = (𝐹(𝑔𝑛), 𝐹(𝑒𝑖𝑛𝜙(𝑧))(𝜎))

𝜃𝑛(𝜈)  = 2𝜋(𝑔𝑛 , 𝑒
𝑛𝑛𝜙(𝑧)) = 2𝜋𝐹(𝑔𝑛𝜙)(𝑣).

                            (3.4) 

We now modify the definition for the convolution product of two distributions in 𝐷′(m) given by Gelfind end Stilov:  

 

Definition 3. Let 𝑓 and �̃� be ultradistributions in 𝑍′(𝑚) such that the function (�̃�(𝜎), 𝜓(𝜎 + 𝜈)) is in 𝑍(𝑚) for all 𝜓 

in 𝑍(𝑚). Then the convolution product 𝑓 ∗ �̃� is defined by 

((𝑓 ∗ �̃�)(𝜎), 𝜓(𝜎)) = (𝑓(𝜈), (�̃�(𝜎), 𝜓(𝜎 + 𝜈)))                           (3.5) 

for all 𝜓 in 𝑍(𝑚). 

 

It follows that 𝑓 ∗ �̃� exists if 𝑔𝜙 is in 𝐷(𝑚). (This condition is not always true for all 𝑔 ∈ 𝐷′(𝑚). If �̃� ∈ 𝑍(𝑚), then 𝑔𝜙 ∈

𝐷(𝑚).) Indeed (�̃�(𝜎), 𝜓(𝜎 + 𝜈)) = 2𝜋(𝑔, 𝑒𝑖𝑧𝜈𝜙(𝑥)) = 2𝜋𝐹(𝑔𝜙)(𝜈),                   (3.6) 

where �̃� = 𝐹(𝑔) and 𝜓 = 𝐹(𝜙).  

 

The following theorem then holds: 

Theorem 1. Let 𝑓 and �̃� be ultradistributions in 𝑍′(𝑚) and suppose that the convolution product 𝑓 ∗ �̃� exists. Then 

Proof. If 𝐹(𝜙) = 𝜓, we have 

𝜓′(𝜎) = 𝐹(𝑖𝑥𝜙(𝑥))(𝜎). 

Hence 𝑍′(𝑚) is closed under differentiation. 
Certainly 

((𝑓 ∗ �̃�)′, 𝜓)  = −(𝑓 ∗ �̃�, 𝜓′) = −(𝑓(𝜈), (�̃�(𝜎), 𝜓′(𝜎 + 𝜈)))

((𝑓 ∗ �̃�)′, 𝜓)  = (𝑓(𝜈), (�̃�′(𝜎), 𝜓(𝜎 + 𝜈))) = (𝑓 ∗ �̃�′, 𝜓)
                   (3.7) 

for all 𝜓 in 𝑍(𝑚). Equation follows. From the fact that if 𝐹(𝜙), we get 

 

𝜓′(𝜎 + 𝜈) = 𝐹(𝑖𝑥𝜙(𝑥)𝑒𝑖𝑥𝜈)(𝜎). 

It follows that: 

(�̃�(𝜎), 𝜓′(𝜎 + 𝜈))  = 2𝜋(𝑔(𝑥), 𝑖𝑥𝜙(𝑥)𝑒1𝑥𝜈)

(�̃�(𝜎), 𝜓′(𝜎 + 𝜈))  = 2𝜋
𝑑

𝑑𝜈
(𝑔(𝑥), 𝜙(𝑥)𝑒1𝑥𝜈)

(�̃�(𝜎), 𝜓′(𝜎 + 𝜈))  =
𝑑

𝑑𝜈
(�̃�(𝜎), 𝜓(𝜎 + 𝜈)).

                         (3.8) 

Hence, 

((𝑓 ∗ �̃�)′, 𝜓) = (𝑓′(𝜈), (�̃�(𝜎), 𝜓(𝜎 + 𝜈))) = (𝑓′ ∗ �̃�, 𝜓)                  (3.9) 

for all 𝜓 in 𝑍(𝑚) and Equation  follows. 

Note that 𝑓′ ≠ 𝐹(𝑓′) is general. 
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    We now note that if 𝑓 and �̃� are arbitrary ultradistributions in 𝑍′(𝑚), then the convolution product 𝑓 ∗ �̃�𝑛 always 

exists by the above definition  since by Lemma 1, (�̃�𝑛(𝜎), 𝜓(𝜎 + 𝜈)) is in 𝑍(𝑚) for all 𝜓 in 𝑍(𝑚). This leads us to the 

following definition. 

 

Definition 4. Let 𝑓 and �̃� be ultradistributions in 𝑍′(𝑚) and let �̃�𝑛 = �̃�𝜏𝑛. Then the neutrix convolution product 𝑓 ⊗ �̃� 

is defined to be the neutrix limit of the sequence {𝑓 ∗ �̃�𝑛}, provided the neutrix limit ℎ̃ exists in the sense that 

𝑁 − lim
𝑛→∞

 (𝑓 ∗ �̃�𝑛, 𝜓) = (ℎ̃, 𝜓) for all 𝜓 in 𝑍(𝑚);                      (3.10) 

    Definition 4 is indeed a generalization of Definition 3, since if the convolution product 𝑓 ∗ �̃� exists by Definition 3, then 

(�̃�(𝜎), 𝜓(𝜎 + 𝜈)) ∈ 𝑍(𝑚), i.e., 𝑔𝜙 ∈ 𝐷(𝑚) for all 𝜙 ∈ 𝐷(𝑚). This implies 𝑔 ∈ 𝐶∞(𝑚). 

Therefore (�̃�𝑛(𝜎), 𝜓(𝜎 + 𝜈)) = 2𝜋𝐹(𝑔𝑛𝜙)(𝜈) converges to (�̃�(𝜎), 𝜓(𝜎 + 𝜈)) in 𝑍(𝑚). This is because 𝑔𝑛𝜙 → 𝜙 (if 𝑓 ∈

𝐶∞, then 𝑓𝑛𝜙 (where 𝑓𝑛 = 𝑓 ∗ 𝛿𝑛 ) converges to 𝑓𝜙 uniformly on the support of 𝜙) in 𝐷(𝑚), and 𝑁 − lim𝑛→∞  (𝑓 ∗

�̃�𝑛, 𝜓) = (𝑓 ∗ �̃�, 𝜓) for all 𝜓 in 𝑍(𝑚). 

The following theorem holds for the neutrix convolution product. 

 

Theorem 2. Let 𝑓 and �̃� be ultradistributions in 𝑍′(𝑚) and suppose that their neutrix convolution product exists. Then 

the neutrix convolution product 𝑓 ⊗ �̃� exists and 

(𝑓 ⊗ �̃�)′ = 𝑓′ ⊗ �̃�. 

Proof. We have 

((𝑓 ∗ �̃�𝑛)
′
, 𝜓) = (𝑓′ ∗ �̃�𝑛, 𝜓) = −(𝑓 ∗ �̃�𝑛, 𝜓

′)                       (3.11) 

and it follows that 

𝑁 − lim
𝑛→∞

 (𝑓′ ∗ �̃�𝑛, 𝜓) = −𝑁 − lim
𝑛→∞

 (𝑓 ∗ �̃�𝑛, 𝜓) = −(𝑓 ⊗ �̃�, 𝜓′)                  (3.12) 

for arbitrary 𝜓 in 𝑍(𝑚). The result of the theorem follows. 

Note that (𝑓 ⊗ �̃�)′ = 𝑓 ⊗ �̃�′ iff 𝑁 − lim𝑛→∞  (𝑓 ∗ (�̃�𝜏𝑛), 𝜓) = 0 for all 𝜓 in 𝑍(𝑚).           (3.13) 

We now prove our main result, the exchange formula. 

 

Theorem 3. Let 𝑓 and �̃� be ultradistributions in 𝑍′(𝑚). Then the neutrix convolution product 𝑓 ⊗ �̃� exists in 𝑍′(𝑚) iff 

the neutrix product 𝑓 ∘ 𝑔 exists in 𝐷′(𝑚) and the exchange formula 

𝑓 ⊗ �̃� = 2𝜋𝐹(𝑓 ∘ 𝑔) 

is then satisfied. 

Proof. Let 𝜓 = 𝐹(𝜙) be an arbitrary function in 𝑍(𝑚) and let 

Θ𝑛(𝜈) = (�̃�𝑛(𝜎), 𝜓(𝜎 + 𝜈)) = 2𝜋𝐹(𝑔𝑛𝜙)(𝜈).               (3.14) 

Then on using Parseval's equation we have 

(𝑓(𝜈), Θ𝑛(𝜈)) = 2𝜋(𝑓(𝜈), 𝐹(𝑔𝑛𝜙)(𝜈)) = (2𝜋)2(𝑓𝑔𝑛, 𝜙).              (3.15) 

If the neutrix convolution product 𝑓 ⊗ �̃� exists then 

(𝑓 ⊗ �̃�, 𝜙)  = 𝑁 − lim
𝑛→∞

 (𝑓(𝜈), Θ𝑛(𝜈)) = (2𝜋)2𝑁 − lim
𝑛→∞

 (𝑓𝑔𝑛, 𝜙)

(𝑓 ⊗ �̃�, 𝜙)  = (2𝜋)2(𝑓 ∘ 𝑔, 𝜙) = 2𝜋(𝐹(𝑓 ∘ 𝑔), 𝐹(𝜙)).
               (3.16) 
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The neutrix product 𝑓 ∘ 𝑔 therefore exists and the exchange formula is satisfied. Conversely, the existence of the neutrix 

product 𝑓 ∘ 𝑔 implies the existence of the neutrix convolution product and the exchange formula. 

4. Some Results   

The following Fourier transforms of the functions 𝑟𝜆 and Δ𝑘𝛿(𝑥) were given  

𝐹(𝑟𝜆) = 2𝜆+𝑚𝜋𝑚/2
Γ(

𝜆+𝑚

2
)

Γ(−
𝜆

2
)

𝜌−𝜆−𝑚                           (4.1) 

where 𝜆 ≠ −𝑚,−𝑚 − 2,⋯ and 𝜌 = √Σ𝑖=1
𝑚 𝜎𝑖

2, and 

𝐹 [𝑃 (
∂

∂𝑥1

, ⋯ ,
∂

∂𝑥𝑚

) 𝑓(𝑥)] = 𝑃(−𝑖𝑠1, ⋯ , −𝑖𝑠𝑚)𝐹(𝑓). 

Hence it follows that 

𝐹(Δ𝑘𝛿(𝑥)) = 𝜌2𝑘𝐹(𝛿) = 𝜌2𝑘,                            (4.2) 

where Δ denotes the Laplace operator. 

Theorem 4. The neutrix convolution products 𝜌2𝑘−𝑚 ⊗ 1 and 𝜌2𝑘−1−𝑚 ⊗ 1 exist and 

𝜌2𝑘−𝑚 ⊗ 1 =
Γ(𝑘)2𝑘−𝑚+1𝜌2𝑘

Γ(
𝑚−2𝑘

2
)𝜋𝑚/2−1𝑘!𝑚(𝑚+2)⋯(𝑚+2𝑘−2)

                        (4.3) 

for 𝑘 = 1,2,⋯ , [
(𝑚−1)

2
] and 

𝜌2𝑘−1−𝑚 ⊗ 1 = 0 

for 𝑘 = 1,2,⋯ , [
𝑚

2
]. 

    The next theorem now gives a natural sufficient condition for the existence of the neutrix distribution product in the 

space 𝒟′(𝑀). 

Theorem 5. Given the distributions 𝐹 = {𝐹𝑖}𝑖∈𝐼  and 𝐺 = {𝐺𝑖}𝑖∈𝐼 on a manifold 𝑀 with an atlas {𝜅𝑖 , 𝑀𝑖}𝑖∈𝐼 on it, suppose 

the neutrix product 𝐹𝑖 ∘ 𝐺𝑖  exist (in 𝒟𝑚
′  ) and is equal to 𝐻𝑖  on the whole domain �̃�𝑖  for all 𝑖 in 𝐼. Then the neutrix 

product 𝐹 ∘ 𝐺 exist in 𝒟′(𝑀) and is equal to 𝐻 = {𝐻𝑖}𝑖∈𝐼 on the whole manifold 𝑀. 

Proof. Consider the distribution 𝐻 on 𝑀 defined by the collection {𝐻𝑖 = 𝐹𝑖 ∘ 𝐺𝑖}𝑖∈𝐼 of distributions in 𝒟′(𝑀�̃�). Then for 

each 𝑖 in 𝐼 equations holds. Taking the pull-back map of the component 𝐻𝑖  by 𝜅𝑖𝑗, we get for any 𝑖 in 𝐼 

 

   𝜅𝑖𝑗
∗ 𝐻𝑖 = 𝜅𝑖𝑗

∗ (𝐹𝑖 ∘ 𝐺𝑖) = 𝜅𝑖𝑗
∗ 𝐹𝑖 ∘ 𝜅𝑖𝑗

∗ 𝐺𝑖 = 𝐹𝑗 ∘ 𝐺𝑗 = 𝐻𝑗                         

 

 Each equation here holds on the whole domain �̃�𝑖 ⊆ 𝐑𝑚, except the third one that holds on 𝜅𝑗(𝑀𝑖𝑗) ⊆ �̃�𝑖. Thus, we get 

exactly the consistency between the components 𝐻𝑖  and 𝐻𝑗  for arbitrary 𝑖 and 𝑗 in the index set 𝐼. According to the 

Lemma, we have thus defined a unique distribution 𝐻 in 𝒟′(𝑀). Clearly, it satisfies Definition 5 with an open set 𝑈 coin-

ciding with 𝑀 (and all 𝑈𝑖 = �̃�𝑖  ). The proof of the theorem is complete. 
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    We note that the sufficient condition set up by this theorem would apply to a variety of particular neutrix products in 

𝒟′(𝑀) since most of the neutrix distribution products proved so far to exist are each equal to some distribution on the 

whole space. 

    A further refinement of this existence theorem is given below. We first introduce the following notation. Any open set 

𝑈 in given manifold 𝑀 and atlas {𝜅𝑖}𝑖∈𝐼 on it can be viewed as submanifold of 𝑀 with an inclusion map id id𝑈: 𝑈 →

𝑀: 𝑥 ↦ 𝑥 and atlas {𝑈𝑖 , 𝜅𝑖
𝑈 = 𝜅𝑖|𝑈𝑖

}
𝑖∈𝐼

. Thus, applying Definition 1, we can define the space of distributions on 𝑈, which we 

shall denote by 𝒟𝑀
′ (𝑈) (with an index ' 𝑀 ' indicating the parent manifold). 

Theorem 6. Given the distributions 𝐹 = {𝐹𝑖}𝑖∈𝐼  and 𝐺 = {𝐺𝑖}𝑖∈𝐼 on a manifold 𝑀 with atlas {𝜅𝑖}𝑖∈𝐼 and an arbitrary open 

set 𝑈 in 𝑀, suppose the neutrix product 𝐹𝑖 ∘ 𝐺𝑖  exists (in 𝒟𝑚
′  ) and is equal to 𝐻𝑖  on the open set �⃗⃗� 𝑖  for any 𝑖 in 𝐼. 

Then there is a unique distribution 𝐾 = {𝐾𝑖}𝑖∈𝐼 on the submanifold 𝑈 of 𝑀, such that 𝐾𝑖 = 𝐻𝑖|�̃�𝑖
 for all 𝑖 in 𝐼. 

Proof. Consider the distribution 𝐾 on the submanifold 𝑈 of 𝑀 defined by the collection {𝐾𝑖 = 𝐻𝑖|�̃�𝑖
}
𝑖∈𝐼

 of distributions 

in 𝒟′(�̃�𝑖). We have 

𝐹𝑖 ∘ 𝐺𝑖 = 𝐾𝑖  on �̃�𝑖  for each 𝑖 in 𝐼, and therefore equation holds. Now we show that {𝐾𝑖}𝑖∈𝐼 is 'well-defined' distribution 

on 𝑈. Indeed, for any 𝑖 and 𝑗 in 𝐼, the following chain of equations for the pull-back map by 𝜅𝑖𝑗
𝑈  can be obtained: 

 

(𝜅𝑖𝑗
𝑈)

∗
𝐾𝑖 = (𝜅𝑖𝑗

𝑈)
∗
(𝐻𝑖|�̃�𝑖

)  = (𝜅𝑖𝑗
𝑈)

∗
((𝐹𝑖 ∘ 𝐺𝑖)|�̃�𝑖

)

 = (𝜅𝑖𝑗
𝑈)

∗
((𝐹𝑖|�̃�𝑖

) ∘ (𝐺𝑖|�̃�𝑖
))    

 = ((𝜅𝑖𝑗
𝑈)

∗
(𝐹𝑖|�̃�𝑖

)) ∘ ((𝜅𝑖𝑗
𝑈)

∗
(𝐺𝑖|�̃�𝑖

))  

 = (((𝜅𝑖𝑗
𝑈)

∗
𝐹𝑖)|�̃�𝑖

) ∘ (((𝜅𝑖𝑗
𝑈)

∗
𝐺𝑖)|�̃�𝑖

)  

 = (𝐹𝑗|�̃�𝑗
) ∘ (𝐺𝑗|�̃�𝑗

)  [ by (4)] 

 = 𝐻𝑗|�̃�𝑗
= 𝐾𝑗 .

                         (4.4) 

    Each equation here holds on the whole �̃�𝑗, except for that obtained by holding on 𝜅𝑗(𝑀𝑖𝑗) ∩ 𝑈𝑗 = 𝜅𝑗(𝑈𝑖𝑗). We there-

fore have: (𝜅𝑖𝑗
𝑈)

∗
𝐾𝑖 = 𝐾𝑗  on the set 𝜅𝑗(𝑈𝑖𝑗) for all 𝑖 and 𝑗 in 𝐼, and it follows from the Lemma that the collection {𝐾𝑖}𝑖∈𝐼  

defines a unique distribution 𝐾 in the space 𝒟𝑀
′ (𝑈). This completes the proof of the theorem. 

Finally, we shall employ the following canonical definitions. For a given distribution 𝐹 = {𝐹𝑖}𝑖∈𝐼 in 𝒟′(𝑀) and an open set 

𝑈 in 𝑀 consider the collection {𝐺𝑖 = 𝐹𝑖|�̃�𝑖
}
𝑖∈𝐼

 (we can put 𝐺𝑖 = 0 if 𝑈 ∩ 𝑀𝑖  is empty). In the above results, their ele-

ments satisfy the consistency condition and thus they define a unique distribution in 𝒟𝑀
′ (𝑈), that can equally be denoted by 

𝐹|𝑈. Further, we have this definition for the equality of distributions on 𝑀. 

 

Now F = G on an open set U if F \u= G \u in  𝒟𝑀
′ (𝑈).                     (4.5) 

5. Application and Mathematical Use of Neutrix Convolution on 𝑪∞-Manifolds 

The concept of neutrix convolution extends the classical convolution operation to broader classes of functions and distribu-

tions, such as ultra-distributions. When dealing with 𝐶∞-manifolds, the convolution operation must be defined in a way that 

respects the manifold's smooth structure. This allows for advanced applications in mathematical physics, partial differential 

equations, and signal processing on manifolds. 

The neutrix convolution of two distributions f and g, denoted by (𝑓 ∗ 𝑔), is defined as a limit of regularized convolutions. For 

ultra-distributions, this involves extending the notion of convolution beyond classical distributions, allowing for more singular 

objects. Mathematically, if f and g are ultra-distributions, their neutrix convolution is defined as: 
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(𝑓 ∗ 𝑔)(𝑥) =  lim
𝜖→0

∫ 𝑓(𝑡)𝑔(𝑥 − 𝑡)𝜂𝜖(𝑡)𝑑𝑡
∞

−∞
                       (4.6)    

 

where 𝜂𝜖 is a sequence of regularizing functions (often chosen as a delta-sequence). 

Distributions on 𝐶∞-Manifolds 

A 𝐶∞-manifold M is a topological space that locally resembles ℝ𝑛 and has a globally defined smooth structure. Distribu-

tions on M are continuous linear functionals on the space of smooth test functions 𝐶𝑐
∞(𝑀). 

Application: Signal Processing on 𝐶∞-Manifolds, in signal processing, convolution is a fundamental operation for filtering 

and analyzing signals. When signals are defined on a 𝐶∞-manifold, the neutrix convolution can be used to handle singulari-

ties and extend classical methods to more complex geometries. 

Example Application: Consider a 𝐶∞-manifold M representing the surface of a curved sensor array. Let f be a signal record-

ed by the sensors and g a filter function (both modeled as distributions on M). To apply the neutrix convolution on  M : 

1. Local Representation: Cover M with coordinate charts (𝑈𝛼 , φ𝛼), where 𝑈𝛼 are open sets in M and 𝜑𝛼: 𝑈𝛼 → ℝ𝑛 are 

diffeomorphisms. 

2. Local Convolution: In each chart, represent f and g locally as distributions on ℝ𝑛. Compute the local neutrix convolution 

(𝑓𝛼 ∗ 𝑔𝛼)(𝑥) using the definition for ultra-distributions. 

3. Global Assembly: Use partition of unity {𝜓𝛼} subordinate to the cover {𝑈𝛼} to piece together the local convolutions into 

a global distribution on M: 

 

(𝑓 ∗ 𝑔)(𝑥) =  ∑ 𝜓𝛼(𝑥)(𝑓𝛼 ∗ 𝑔𝛼)(𝛼 𝜑𝛼(𝑥))                          (4.7) 

This process ensures the convolution respects the manifold's smooth structure. 

    Mathematical use, consider a specific 𝐶∞-manifold M, such as the 2-sphere 𝑆2. Let f and g be ultra-distributions on  

𝑆2 representing some physical quantities (e.g., temperature distribution and heat kernel). 

1. Choose Regularizing Sequence: Select 𝜂𝜖 as a sequence of mollifiers on 𝑆2, adapted to the manifold's geometry. 

2. Compute Convolution: For each 𝜖, compute the regularized convolution: 

(𝑓 ∗∈ 𝑔)(𝑥) =  ∫ 𝑓(𝑦)𝑔(𝑒𝑥𝑝𝑥
−1(𝑦))𝜂𝜖(𝑑(𝑥, 𝑦))𝑑𝑉(𝑦)

𝑆2                 

where 𝑒𝑥𝑝𝑥
−1 is the inverse exponential map and d(x,y) is the geodesic distance. 

3. Take Neutrix Limit: Define the neutrix convolution as the limit: 

(𝑓 ∗ 𝑔)(𝑥) =  log∈→∞(𝑓 ∗∈ 𝑔)(𝑥) 

    This application allows for advanced analysis of signals on curved surfaces, with potential applications in geophysics, 

medical imaging, and other fields requiring signal processing on non-Euclidean domains. 

6. Conclusion 

The Neutrix convolution of distributions on C∞-manifolds and ultra-distributions offers an effective framework for compre-

hending and working with singularities in a variety of mathematical applications. We are able to have a better understanding 

of the interaction between smooth and unique structures by expanding the concept of convolution to spaces of ul-

tra-distributions. This framework provides an abundant environment to investigate distribution behavior under diverse 

transformations and operations, opening new avenues for research and applications in fields including quantum field theory, 

harmonic analysis, and partial differential equations. Research on Neutrix convolution is still ongoing and productive, with 

great potential for expanding our knowledge of the complex interrelationships between smoothness and singularity in 

mathematical analysis. 
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