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1. Introduction

Semi-symmetric metric connection has been studied by various mathematicians including Ram Nivas [7], Srivastava [5], Imai,
and S.I. Hussain [4]. |. Sato defined and studied para contact manifolds. K.D. Singh and Rakeshwar Singh have studied
semi-symmetric metric connection on an almost para-contact manifold [9]. Recently Nirmala S. Agashe and others have de-

fined the motion of semi symmetric nonmetric connection in a Riemannian manifold [1].
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2. Preliminaries

Let M™ be an n-dimensional real differentiable manifold equipped witha C® (1,1) tensor field f,a C*® vector field T and a
C® 1-form A satisfying

()X =Xx-AX)T whereX™ = f(X) (b)A(T) =1 (1.1)

Then the structures (f,T,A) on M™ is said to be an almost para contact structure manifold. It can be verified that on M™
the following holds.

(@T =0 MAX) =0 (rank(f)=n—-1 (1.2)

An almost para contact manifold M™ with structure (f,T,A) always admits a positive definite Riemannian metric g which
satisfies

(@g(x7¥7) = g(X,y) —A)AY) (b)g(x,T) = A(X) (1.3)

M™ endowed with sucha metric g is called almost para contact metric manifold with structure (f,T,A) from (1.3) it follows
that

gX Y )=gX,Y") (1.4)
If we put

F(X,Y) = g(X~,Y) (1.5)
then we get

(a)F(x,Y) —F(x,Y) =0 (b)F(x,Y) —F(x~,Y) =0 (c)F(T,Y) =0
(1.6)

A linear connection V is said to be semi-symmetric connection on the almost para contact manifold M™ if its torsion tensor
SX,Y)=VY -V, X—[X,Y]
satisfies the formula
SX,Y) =A)X - AX)Y (1.7)

V is said to be semi-symmetric non meyric with respect to the associated Riemannian metric g if

(Vxg) = —A(Y)g(X,Z) — A(Z)g(X,Y) (1.8)
We define V' to be semi-symmetric nonmetric f-connection if in addition to (1.7) and (1.8) V satisfies
(Vxf) =0 (1.9)
Suppose V is a Riemannian connection on M™, then we can always put
VxY = DyY + u(X,Y) (1.10)
u being tensor of (1,2) type satisfying
guX,Y),2)+guX,2),Y)=AV)gX,Z2) + AY)g(X,Z) (1.11)

Obviously, we have
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SX,Y) =ulX,Y) — u(,X) (1.12)

Nirmala S. Agashe and others has expressed the value of u(x, y) in terms of S and §’, both being tensors of type (1, 2) as fol-
lows [1]

u(X,Y) = %(S(X, Y)+S'X,Y)+S'(Y,X)+gX T (1.13)
where
98(Z,X),Y) =g X,Y),2) (1.14)
It can be verified that
S'(X,Y) = AX)Y — g(X, V)T (1.15)
and
u(X,Y) = A(Y)X
Thus, we get
VyY = DyY + A(Y)X (1.16)
It is easy to verify that
(@s'(Y,X) = u(x,Y) + gXx, T (B)g(sx,v, 1)) =0 ()s(x,Y) =
X~ (@s'(v,X) =ulx,T) + AX)T (e)s'(x,Y) =S (v, X) = S(X,Y) (1.17)

Theorem 1. In an almost para contact manifold M™, the torsion tensor of the semi-symmetric non-metric connection satis-
fies the following identities (a)S(X,T) = X~ (b)S(X—,Y) = A(V)X — AX)AY)T (c)s(x—,Y) +S(x,vy) =
sGY) (@DsGY) =G 1) = 0 (A(S(x, 1)) = 0 (DS ¥) =s(x, V)~ (1.18)

Now we will establish certain identities among the (0,3) type tensors defined by [5]
s'(x,v,2) = g(s(X,Y),2) and v'(X,Y,2) = g(u(X,Y),2) (1.19)
or equivalently
SXY,2)=@w,T)gX,T)g(,2) gX,2))
and
u'X,Y,2) =T gZT) gX,Y) 9(X,2))

Theorem 2.  The following relations hold in an almost metric manifolds (a)u'(X,Y,Z7) =S'(X",Y",Z) =
0 (W (x,v,2)=5(zY,%X) ()u(x,Y,2) =-ulx,2Y) (d)s'(x,Y,2) =-5'"(V,X,Z2) (e)S'(X,Y,Z) —
Sx,z,y)=uxv,2) (D&Y, 2)-u (XY, 2)-uXY,2)=0 (pu(x—,v,2) —u'(X,Z,Y)=0

(1.20)

Theorem 3. The connection V , D and the (0,3) type tensor u’ of the almost para contact metric manifold (F,T,A,g) are re-
lated by the following

(@) (VxF)(Y,2) = (DyF)(Y,Z) = (DxF)(Y,Z) + w'(X, Y7, Z) —
u(X,Y,27) 1.21) (b)(V4F)(v,2) =
(DxF)(Y~,Z") (1.22)
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This proof is easy consequence of (1.5) and (1.6) (a).

Corollory 1. It follows from 2 that
(WxF)(Y,2) = (DxF)(Y,2) iff W(X,Y ,Z) =u'(X,Y,Z"

Theoremd4. VY =DyY —F(X,Y)T

2. The Curvature Tensor

We denote by R and K. The curvature tensor of the semi-symmetric non-metric connection ¥ and the Riemannian connec-
tion D respectively, i.e,

(A)R(X,Y)Z = V\VyZ — VyVyZ — Vix1Z and (b)K(X,Y)Z = DyDyZ — DyDyZ — D[y y1Z (2.1)
Then we state the following theorem
Theorem 5. The two-curvature tensor are related by the following relation

RX,V)Z =KX, Y)Z + A(DyZ)X — A(DxZ)Y — A(Z)S(X,Y) + X(A(2))Y — Y(A(2))X (2.2)

3. The Nijenhuis Tensor

In this section we study the Nijenhuis tensor n relation to the semi-symmetric non-metric connection and establish various
identities involving it. The Nijenhuis tensor is defined as

(@NX,Y)=[XY] and (b)) N(X,Y) = [X Y]+ [X,Y] = [X,Y] = [X,Y]" = A(X,YDT (3.1)
If we put

B(Xx,Y) = [x,Y] +[X,Y] and W(X,Y) = [X~, Y] + [X, Y] (3.2)
Then (3.1) (a) reduces to

N(x,Y) = B(x,Y) — W(X,Y)

Further if we put
(a)B(x,v,X) = g(B(X,Y),Z2) (W)W(X,V,X) =gW(X,Y),Z) (c)N(X,Y,X) = g(N(X,Y),Z) (3.3)
Then it is evident from the definitions that

N(X,Y,X) = B(X,Y,X) - W(X,Y,X) (3.4)

Theorem 6. The Nijenhuis tensor N defined on M™ with the Riemannian connection D satisfies the following identity

NX,Y) = Dx-IY) = (Dy-IX) = (Dxf (V) + (Dyf O (3.5)
Theorem 7. B(X,Y) defined by (3.2)(a) satisfies the following equation
BX,Y)=Vy-Y —V-X +V,¥Y —A(X,Y]) —S(X,Y) (3.6)

Remark 1:
let V be a semi-symmetric non-metric f-connection over M™, then from (3.5) we have

BX,Y)=[X, Y]+ A(X,Y]) + (VxY — Vp-X) (3.7)
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Theorem 8. An almost paracontact metric structure with semi-symmetric non-metric f-connection has vanishing Nijenhuis
tensor

Proof:
from (3.5) and (1.16) we have

NXY) =VxfY = fUxY =V fY + fUxY + W fX = fX =V ) = (V) = (W HE) + (A&
In view of V' being semi-symmetric non-metric f-connection the Nijenhuis vanishes.

4. Conclusion

In this paper, we have concluded that in an almost para contact metric, the connection V , D and (0,3) type tensor u’ are
related by-

(@) (vyF)(Y,2) = (DyF)(Y,2) = (DyF)(Y,2) + W' (X, Y7, 2) —«'(X,Y,Z27) (b)(VxF)(Y,Z)
= (DxF)(Y27)

The two-curvature tensor of semi-symmetric non-metric connection? and Riemannian connection D are related as
RX,VZ =KX, Y)Z + A(DyZ)X — A(DxZ)Y — A(Z)S(X,Y) + X(A(2))Y — Y(A(2))X

And, also in view of being semi-symmetric non-metric f-connection, the Nijenhuis Tensor vanishes.
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